MATH 223B: ALGEBRAIC NUMBER THEORY

SALIM TAYOU
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1.1. Bookeeping. The grading of the course will be based on occasional problem sets and a final
presentation (one hour and fifteen minutes at the end of the semester) on some suitable topic.

1.2. Motivating Questions and Course Outline. A major problem in number theory is that
of trying to understand Gal(@/ Q). This Galois group controls all finite extensions of Q, which,
recall, are number fields. If K/Q is finite and Galois, then Gal(K/Q) is a quotient of Gal(Q/Q).
This begs the following question: can any finite group G be of the form Gal(K/Q)? This is called
the inverse Galois problem.

Class field theory aims to describe not the entirety of Gal(Q/Q), but its abelianization Gal(Q/Q).
It attempts to do so using only information about the field Q itself. Now, how explicit is this de-
scription? In other words, given a number field K, how do we go about constructing abelian
extensions of K? Classically, this is called Kronecker’s dream of youth. For example, for K = Q,
every abelian extension is contained in a cyclotomic field Q({,,) (this is Kronecker-Weber). For
K = Q(VD) with D > 1, a similar result is also possible (relies on the theory of complex multi-
plication). The same question can be answered for K a local field, but for general K the answer
is not clear.

The following is an outline for the class:

(1) Review of local class field theory and abstract class field theory;
(2) Global class field theory;

(3) Brauer groups and central simple algebras;

(4) Analytic methods: L-functions and zeta functions.

1.3. Review of Local Class Field Theory. Let K be a local field, complete with respect to a
discrete valuation with finite residue field. We fix the following notation: let vx : K* — Z be the
discrete valuation on K, where we set vg(0) = oo; let Ox = {x € K | vg(x) > 0} be the discrete
valuation ring associated to vk; let 7k be a uniformizer; let Px = {x € K | vx(x) > 0} be its
maximal ideal; let k = Ok /Px be the finite residue field; let ¢ = |k|, and set |a| = q_“K(“; and let
Uk = {x € K* | vg(x) = 0}. The following proposition is proved in Neukirch Chapter 2.

Proposition 1.1. A local field K is a finite extension of Q, or [F,((t)).
Let G = Gal(K/K). Recall that this is a profinite group, and G% = Gal(K/K)®.
Theorem 1.2. There exists a canonical isomorphism for every finite Galois extension L /K
rijk : Gal(L/K)® — K*/Npk (L")

called the reciprocity homomorphism.
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Corollary 1.3. The association L +— N = Npjx(L*) gives a one-to-one correspondence between
finite abelian extensions L/K and open subgroups of K* of finite index. This correspondence is in-
clusion reversing: Ly C L, if and only if N;, € Np,. Moreover, we have N1,1, = N1, N N1, and
Ninr, = NN,

Now, we outline the construction of r7 k. Let K /K be the maximal unramified extension.
Because unramified extensions of K bijectively correspond to extensions of the residue field, the
maximal unramified extension of K corresponds to k, the algebraic closure of k. Thus, we have
an isomorphism

Gal(K/K) — Gal(k/k) =~ Z
under which the Frobenius element, ¢k, is sent to 1._This determines a surjective map d : G =
Gal(K/K) — Gal(K/K) ~ Z. Now, let A = K, ASK/D) = 1+ 1f L/K is a finite extension, then
we use er, and f; to denote the ramification index and the inertia degree. 1t is not difficult to check
that vy /e, prolongs vg to L*, where

L
—or(L%) =
er

L K] og (Nr/x(L7)).

Hence,
ok (N/x(LY)) = frop (L") = fi Z.
Let o € Gal(L/K), and let & be an extension to Gal(L/K) such that olg = oy for some n > 1. Set

S =1L%andletry €S a prime element. Then ry k(o) = N5k (75) mod Np/xL*. As an exercise,
see what happens in the unramified case.

1.4. Abstract Class Field Theory. Let G be a profinite group (perhaps Gal(K/K) for some field
K). Let A be a continuous G-module so that the map GXA — A is continuous when A is endowed
with the discrete topology. Let G;, € G be some closed subgroup (in the concrete example given
in the previous parenthetical, G; would correspond to the Galois group of some intermediate
extension K/L/K). The open subgroups of G are also closed; we will be interested in the open
subgroups of finite index. Let

Ar={xe€eA|x°=xforall o € G.}.

The condition that A is continuous is equivalent to writing

For every extension L/K, we have Gy C Gk and Ax C Aj, and if the extension is finite, then we
have a norm map Nk : Ap — Ak given by

Np/k(x) = 1—[ x7,

where the product runs over a set of representatives of Gx/Gy. If L/K is Galois (i.e., Gy is normal
in Gg), then Ay is G(L/K) = Gg/Gr-module with AGWL/K = Ar Now, fix a choice of continuous
surjective morphismd : G — 7. Let] = ker(d) be its inertia groups. Note that I = G(K/K). For
any L, we have maps

I y G, —4 Z,
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and note thatI; = ING; = GI::GLQGI% = G, ;. Therefore, L=LK. Let f; = (Zd(GL)) and e; = (IIy).
If f; is finite, then

1 —~
dL:ﬁd:GL_)Zs

giving an isomorphism d; : G(L/L) — Z.
Definition 1.4. The element ¢; € G(L/L) with d;(¢;) = 1 is called the Frobenius over L.

In fact, the map Frob(i/K) ={o € Gal(]z/:K) | d(o) > 1} — Gal(L/K) is surjective and if
& € Frob(L/K), % =L° [2: K] < oo, then % = L, fy/x = d(5), and & = ¢s.

Definition 1.5. A henselian valuation of Ag with respecttod : G — Zisa homomorphism:
v : Ax — Z such that

(1) v(Ak) =Z > Z and Z/nZ = Z/nZ;

(2) v(Nr/k(AL)) = fiZ for all L/K finite extensions.

We define for L/K finite
1

fr

op = —(voNyk) : Ak » Z

andov; =vcooforallo € G.

Definition 1.6. A prime element of Ay is an element 7 such that oy (77) = 1. Let U, = {u € Ay |
UL(U) = 0}.

2. THURSDAY, JANUARY 25

2.1. Abstract Class Field Theory, continued. The following is the main theorem of abstract
class field theory:

Theorem 2.1 (Abstract Class Field Theory). Let L/K be finite and Galois. Then there exists a
canonical morphism

rik 2 G(L/K) — Ag/NpjkAL

which induces an isomorphism G(L/K)® ~ Ag /Ny xAyr. The resulting correspondence L + N, =
Nk Ay induces a bijection

{L/K finite abelian} «— {open subgroups of Ax}.

This correspondence is inclusion reversing, so Ly C Ly if and only if Ni, O Ni,. Moreover, we have

NLle = NLl N NL2 andNleLz = NLlNLz-

2.2. Global Class Field Theory. In what follows, we introduce some of the main objects needed
for Global Class Field Theory. Let K be a number field with absolute Galois group G = Gal(K/K).
Recall that in abstract class field theory, we started with some G-module A. In the local setting,
we had A = K*; in the global setting, it is natural to ask what the G-module A will be. In the
following, a prime p is taken to be an absolute value on K. If p is archimedean, then p is said to be
infinite; if p is nonarchimedean, then p is said to be finite. For any prime p of K, we can complete
K at p, and local class field theory yields an isomorphism Gal(fp/Kp)ab — I/{;*. We would like

to package together the modules f(; " into some G-module.
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Definition 2.2. Let K be a number field. The adéle ring is the restricted product of all the K,,’s,
for p finite or infinite:

A = l—['Kp _ {(Xp) € 1—[ K, ‘ Xp € OKp for all but finitely many p}
P P

(here, for N; C M; the prime notation []; M; denotes the set of tuples (m;); with m; € N; for all but
finitely many i). If p is infinite, then we can take O, = Kj, though this is a matter of convention.

Note that there is a natural diagonal map K < Ag given by x — (x),. For every set of
primes S containing Se, = {0 : K — C up to conjugacy} (note that S, is the set of infinite primes

of K), let
Ay =] Ko x| |0k c Ak

pes pésS

Note that
— 1 S
AK = h_r)n AK'
S finite

Now, A}i inherits the product topology from K and Ok,, and if S C §’, then the natural map

Ai — Afé is continuous. Hence, Ak is endowed with the inductive limit topology, which makes
it into a topological ring. Its basic open sets take the form

w=[]wox| |0k,
peS pe¢s

where S is some finite set of primes containing S., and W;,, C K, is open. Warning: the topology
on A is not the one induced by the product []" C []. Note that [],cs Ok, is compact, so A is
locally compact. We also have:

Lemma 2.3. The space Ak is Hausdorff.

Proof. Note that it is sufficient to separate an arbitrary nonzero x € Ag from 0. There exists some
p such that x;, # 0, apply the fact that K, is Hausdorff (in fact, it is a metric space) to separate in
the p-component. O

Definition 2.4. The idéle group is the restricted product
H/K; = {(ocp)p | ap € U, for all but finitely many p}
p

with respect to the unit groups Oy, where U, = Ol’k(p if p is finite, U, = R, for p|oo and K, = R,
and U, = C* for p|eo and K, = C.
The notion of idéle comes from Chevalley is a modification of the notion of ideal. The term

adéle is a portmanteau of the phrase “additive idéle” As in the above, for an S-finite set of primes
(with S D S ), we define the S-idéle to be

=[]k x| |p cik.
pes pés
Similarly, we have
— 1; S
IK = h_r)n I ,
S finite
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and we also have a diagonal embedding i : K* < Ig given by x — (x),. Elements in the image
of i : K* — Ik are called principal idéles, and we call i(K*) the group of principal idéles. The
intersection K° = K* N IIS< is the group of S-units. Note that x € K if and only if x € U, for all
p ¢ S (x is a unit for p finite and is greater than 0 if K, = R). If S = S, then K® = Og (note that
vp(x) = 0 for all p in this case).
Recall from the proof of the Dirichlet Unit Theorem that
O — | [ R=Rr"m,
PESc

where r; is the number of real embeddings and r, the number of complex embeddings up to
conjugation. Moreover, we also have that

1og- [ R
PESs
where A takes x — (log |x|;). Let

H:{(xp)e [17] przo}.

PESw p

Note that A(Oy) is a lattice in H and that ker(4) = p(K), the group of roots of unity in K. In
general, we have the following theorem.

Theorem 2.5. For S finite with S O S, there isa map A : K — [1pes R taking x — (log|x|p).
The map has kernel u(K), and A(K®) is a lattice in H = {(x) | 2 Xp = 0}. Therefore, A(K®) has
rank |S| — 1 (recall that |Seo| =11 + 1 + 2).

Proof. Let Sy = S \ Seo. There are exact sequences

1 > O > K° > J(Sp)

L

0 — [Tyes. R — TTpes R —— TTpes, R,

where J(S¢) is the group ideals generated by p € Sr. The rightmost vertical map A” takes
Hpesf p% +— (—ovplog|p|). This in turn gives an exact sequence

0 — im(}) — im(1) — @(im(1)) c im(1").

Note that im(A’) is a discrete subgroup of [],es R of rank |Se| — 1 and that @(im(A)), is a
discrete subgroup of rank at most |S¢|. if  is the class number, then h(1”(J(Sf))) C @(im(A)) C
A"(J(S¢)), so ¢(im(A)) has rank [S¢|. Therefore, im(4) is discrete of rank [S| — 1, as desired. O

Definition 2.6. The quotient Cx = Ix /K" is called the idéle class group of K.

3. TUESDAY JANUARY 30

Recall for K a number field we can define the ring of adéles Ax = [];, K, with respect to Oy,
which contains a copy of K via the diagonal embedding. The group of units in Ak is the idéle
group Ix = [];, K, which likewise contains a copy of K* via the diagonal embedding. Recall that
Ix /K™ is called the idéle class group. This definition and terminology are reminiscent of another
number theoretic object: the ideal class group Clk.
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Recall that Clk is defined in the following way. Suppose Ok is a Dedekind domain. Let
Jx = J(Ok) be the free abelian group generated by the prime ideals of Ok. If Px denotes the
principal ideals aOk for a € K*, then Clg = Jx/Pk. The following theorem is well-known:

Theorem 3.1. The ideal class group Clk is finite.

However, despite their similarity, this is not always the case for the idéle class group. Let S
denote the set of infinite primes, i.e., the primes p such that p|co. Then note that

and
Seo
/I = | | Ko/ Up = U
pfeo
where we note that K;;/Up =~ Z. More succinctly, we have a short exact sequence

1— I — Jx — 1,

o 1_[ p»(@,

pfoo
Note that K* is sent to Px under the third map. Hence,

where the third map sends

1 — I®/K* — Cx — Clx —— 1
is exact.
Proposition 3.2. We have Ix = IIS<K* if S is large enough.

Proof. Let py,..., P, be the classes of Clx = Jx/Px. If S contains {py, ..., Py} US«, then Ig = IIS(K*.
For a € Ik, consider the corresponding principal ideal () € Jk, and write

<m=rhﬂw

for some o’ € K*. Then a(a’)™* € I, implying a € IZK*. |
Proposition 3.3. The diagonal embedding K* — Ik realizes K* as a discrete subset of Ix.

Proof. 1t suffices to find an open neighborhood W of 1 that does not contain any other element
in K*. Let
W ={a| layly = 1ifp f oo and |a, — 1| < 1if p|oo} = ﬂDp X HUp,
ploo pfoo
where Dy, is some disk.
Suppose x # 11is such that x € W N K*. Then

[ [l -1lp=1
p
]—[|xp—1|p:ﬂ|xp—1|px]—[|xp—1|p<1,

ploo P pfoo

since x — 1 € K*, but

where the inequality follows because, in the first product, the terms are strictly less than 1. O
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The above implies the existence of a topology on Cx = Ix/K*. This also allows us to define an
absolute norm on Ix given by r : Ix — R, taking a +— [], |aplp. In fact, this gives a continuous
homomorphism r : Cx — R;.

Theorem 3.4. The fiber of 1 underr, r™'(1) (which we denote using C%) is compact.

Proof. Define I}) to be r (1) for the map r : Iy — R,. By Proposition we have that Iy = IIS<K*
for S large enough. Recall the function

A:Iﬁﬁl—[R

pIS
given by
a - | |(~loglayly).

plS
Moreover, recall that the image of K° = K* N IIS< under A is a complete lattice with rank |S| — 1
inside the hyperplane given by »; |ap| = 0. Let II“E’O = IIS< N II%. The kernel of A is compact. Pick a
fundamental domain W in the image of . We note that A~1(W?) is compact and that A=}(W?)
surjects onto IIS(’O/K*. O

Recall that in K}, there is a nested basis of open neighborhoods
U, o UV o U,
where if p f co we have Up(") =1+p"ifn > 0.If p|oo, then Ué") = R, for p real and Up(") = C* for
p complex.
Definition 3.5. Set
m= 1_[ p™
P

for n, > 0 and n, = 0 for almost all p. The group

IIT? = 1—[ U;np)

p

is called the congruence subgroup mod m and the group C¢' = I'K* /K" is called the ray class
group mod m.

Theorem 3.6. The closed subgroups of Cx with finite index are precisely those subgroups containing
some Cy.
K

Proof. Note that C¢' is open because I} is open in Ix. We have
[Ck : C] = [Cx : LK [K*][IK* /K" : C],
where we note that [Cx : ["K*/K*] = |Clg| < o, and
LK K Cem] < (L 1) = [ [0 0™ 1 1K5 0™] < .
pfoo ploo

Hence, C? is open and has finite index in Ck, so C? is closed, since we may write

Ck = |_| 9Cx
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and
CM = C \ (|_|c;<“)
g#1
Any W D CI"Q must then be closed of finite index, since [Cx : CI";] > [W: C?] < 0o.

Conversely, if W is closed and of finite index, then W must be open. Hence, the preimage of
W under the map Ix — Ck (i.e., WK™) contains a subset of the form

[ o] [
pées pes
where S is a finite set of primes of K containing S, and W, is an open neighborhood of 1 in Kj;.

If p € Sis finite, then we may choose W, = U;n"). If p € Sis real, then we choose W, C R,. Thus,

we see that the subgroup WK* generated by the above open is of the form I}, so W contains
Cy. O
K

4. THURSDAY FEBRUARY 2

4.1. Ray Class Groups. Recall that for K a number field, the ideéle group is the restricted prod-

uct ,
=[x
p

with respect to Oy C Kj. The group Cx = Ig/K is called the idéle class group. For m =[], p™,
the congruence subgroup mod m is I}', and we can define the ray class group mod m to be
Cg = LIF /K"

We would like an ideal-theoretic description of the ray class group Cx/Cy'. Let J¢' be the
group of fractional ideals that are coprime to m. For a € K such that a = b/c for b,c € Ok, the
condition a = 1 mod m is equivalent to the condition that (b, m) = (¢, m) = 1 and b —c is divisible
by m Let

P ={(a)|a=1 mod m and ais totally positive}

(recall that a totally positive means that for every o : K <= R, we have o(a) > 0). Set Cly =
JZ/PZ.
Proposition 4.1. The map Ix — Jx induces an isomorphism Cg /CY' =~ CI.
Proof. Let
Ilgm) ={aex|ap € Uén") for all p|m}.
We claim that Ix = II(<m)K *. It suffices to show that for each = (ap), in Ik, there exists some

d € K* such that da = (dayp), € II(<m). In other words, day, € U;n”) for all p|m. Such a d exists by
the Approximation Theorem.

Hence, we have a map II((m) — Jg' taking

(ap)p = I = npv”(a")-
P

Composing with the quotient Ji' — Ji'/Pg, note that the resulting map Ilgm) — Jg'/P¢ has
kernel K* N II(<m). Since Ix = IE‘K*, we have Cx = Ix/K* = Ilgm)K*/K*. Therefore,

Ci/CR = (/K (K JK™) = (VK K /(LUK /K,
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which proves the result. O
Example 4.2. Let m > 1 and m = (m). Then
Co/Cq = CIf = (Z/mZ)"

because the map ](5‘ — (Z/mZ)* taking (a) +— {a wherea > 0} is surjective with kernel
{(a) | a=1 mod m,a > 0}.
Recall that (Z/mZ)* = Gal(Q(un)/Q) = Ca/Cy.

If K is a number field and L/K is a finite abelian extension such that Gal(L/K) ~ Cg/C},
then we say that L is a ray class field.

4.2. Ideles in Field Extensions. We would like to understand the behavior of idéles in field
extensions. Let L/K be a finite extension. For p C Ok, suppose pO = Q7" --- Q;". Recall that
for any Q lying over p, we get a field extension g : K, — Lo. Moreover, recall that the algebra
L ®k K, splits as

(1) L®k Ky = HLQ.
Q/p

Note that K}, embeds into L ®x K, as x — 1 ® x =~ (19(x))o. We obtain an injective morphisms
IK — IL and AK — AL.

Let 0 : Ly — L, be an morphism that commutes with the inclusion of K into each L;. Then
there exists a corresponding morphism of idéeles:

I, z > I,
Ik

If L/K is Galois, then for any ¢ € Gal(L/K), we get an such an automorphism o : Iy — I
commuting with the inclusion of Ix in I;. Hence, I is a Gal(L/K)-module.
Proposition 4.3. With notation as above, Ifal(L/ K = k.
Proof. Let 0 € Gal(L/K) and p C Ok a prime. Recall that Gal(L/K) permutes the primes of L
lying over p, i.e., for Q/p, we have o(Q) lying over p, and o is a map Ly — Ly ().
One inclusion is trivial: Ix = (xp)p C ILG ALK since o(xp) = xp for all p.
For the other inclusion, suppose (xg)o € I is fixed by Gal(L/K). Note that there is a map
Ky — Top L*Q taking x, — (xp)o/p- Recall the decomposition group of Q/p, givenby Dg = {0 €
Gal(L/K) | 0(Q) = Q} = Gal(Lg/Kp) C Gal(L/K). If an element (xp) is fixed by Gal(L/K),
then it is fixed by Dg. Hence, x € Kg for all Q. Now, recall that the Galois group Gal(L/K) acts
transitively on {Q | Q[p}. It follows that xy = x¢’ for all Q, Q" lying over p. Thus, (xp)¢ € Ik, as
desired. O

4.3. The Norm Map. For each Q/p, recall from local class field theory the norm map

NLQ/Kp : LE — K;
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taking x € Lo to the determinant of the multiplication-by-x map m, : Lo — Lg. This induces a
map Ny g : I — Ik taking

((xo)omle = || | Neoss, (x0)
Q/p p

Another way to think about this map is as follows. Let x € I;. Consider the multiplication-by-x
map A; — Ay which takes y — xy. As aring, A; = Ag ® L. This fact is simply a global version
of (1). Note that Ay is a finite Ax-module. We may alternatively define Ny x(x) = det(my).

Exercise 4.4. Check that the two definitions of the norm map Ny x : L — K agree.

5. TUESDAY FEBRUARY 6

We take a moment to disambiguate some potentially confusing notation. Recall that
m _ (
= [usm)
P

form =[] p™, and
b((m) ={aelg|a€ Uénp) for all p|m, co}.
Note that I' C II((m)-

Proposition 5.1. Let L/K be a finite extension with a = (ag)g € Ir. Then Ny (a) € Ix and

Np/k(a) = HNLQ/Kp(aQ)
Q/p P

Also, for a tower of number fields M/L/K, we get a map
Ix - I — Iy

and Ny = Npjk © Nyyr. If the extensions are Galois with G = Gal(M/K) and H = Gal(M/L),
then we have that

Nyx(@) = || o(@.

0eG/H

Let L/K be a finite extension of number fields. Then we have the following commutative
diagram:

Ix S > I
.
\\$ |
Cx =Ix/K* —— CL =1 /L"
Proposition 5.2. The map Cx — Cy is injective.

Proof. Note that the kernel of i is simply L* N Ix. If L/K is Galois, then Ix = ILG, and L* NIx = K*.
If the extension is Galois, then we can simply pass to a Galois closure M/L. m]

Proposition 5.3. If L/K is Galois, then Cy, is a G = Gal(L/K)-module and Cf = Ck.
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Proof. That Cy, is a G-module follows from the fact that I} is a G-module and L* is a G-submodule.
Note that Cx C CLG. For the reverse inclusion, let x € CLG with x € I; such that o(x) = x.
Then o(x) = xa® for a° € L*. Let 01,02 € G. Then

xaalag — 0'10'2()() — O'1(X)O'1(aoz) = xaalo'l(aaz),

so %1% = a% gy (a®?). Hence a’° € H'(G,L*) = 0 by Hilbert 90. Therefore, there exists u € L*
such that a’ = o(u) /u, implying o(x/u) = x/iforall o0 € G. It follows that x/u € Cx and x/u = x.
Thus, Cf C Ck, as desired.

Another way to see this is to recall that following exact sequence:

1 > L* > I > Cf, > 1.
Taking G-invariants, we get an exact sequence

1 — L*C > IC » CY > H'(G,L")

(group cohomology G in abelian groups is R*F, where F is the functor taking G-invariants). Since
H'(G,L*) = 0 by Hilbert 90, and since K* = L*C and ILG = Ik, the result falls out. O

5.1. Herbrand Quotients. Let A be a G-module.

Definition 5.4. Let

#H°(G, A)

#H-1(G,A)’

where H(G,A) = A°/NgA and H1(G,A) = NGA/IGA (recall that NGA = {a € A | Nga = 1}
and IgA = {a° ! | a € A}).

If

h(G,A) =

1 > A > B > C > 1
is an exact sequence of G-mdoules, then h(G,B) = h(G,A)h(G,C). Moreover, if H C G is a
subgroup with B an H-module, then

H'(G,Ind2(B)) = H'(H, B)
for i € {0,—1} as long as G is finite. Recall that Indg(B) ={f:C— B| f(xh) = f(x)", h € H}.

Theorem 5.5 (Class Field Axiom). For L/K a finite Galois extension, then

[L:K] ifi=0;
1 otherwise.

#H'(G(L/K),I,) = {

Let L/K be some finite Galois extension, and let p C O. Recall that Ly, = L®k Ky, = [1¢/p Lo
and that I} = H;COK Ly. For each p, fix a Q/p. The corresponding decomposition group is given
by Gg = {0 € Gal(L/K) | o(Q) = Q}. Note that

L,= 1—[ Loo = 1—[ o(Lp)

O'€G/GQ O'€G/GQ

Up= [] Ur= || oW

GEG/GQ GGG/GQ

and that
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Proposition 5.6. We have that

* Go /1%

L, =Ind;’ (L)
and o
Up = Ind ? (Up).
Proof. Let G be a finite group with H C G a subgroup and A an H-module. Then
Ind(A) = 1_[ A”;
0eG/H

from this the result follows. m|

Let S be a finite set of primes containing Sw, and let S be the corresponding set of primes of
L above S.Le., S = {Q | Q/p for some p € S}. Let If =T

Proposition 5.7. Assume L/K is cyclic and that S contains all primes ramified in L. Then
S . i
H'(G,I}) = @) H'(Go, L)
pes

Moreover,
H'(G,I) =~ @ H'(Go, LY).
P

Proof. Recall that

as G-modules, where

Thus,
H'(G.I) = P H (G, L) o H(G,V).
pes
We have H' (G, L;;) ~H i(GQ, LB) and, as an exercise, one can check that

Ve [ [H(G ULy
péES
(one cannot just distribute the cohomology, since the product is infinite). By induction (in the
group theoretic sense), we have that

H'(G,Ury) = H'(Gg, Up).

For p ¢ S, we have that Ly/K, is unramified. So by local class field theory, H (Go, Up) = {1}.
For the second part, recall that
I =lim I,
H
S
S0

i ~ 1: i S\ _ i *
H'(G,1) = im H'(G, I}) = P H'(Go, L),
p
as desired. O
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By Hilbert 90, we have that H‘l(GQ, Lé) = 0. Hence, H'(G,I;) = 0. For i = 0, we have that
Ix /Ny (I) = @p K;/Niy/x, (LE) Thus, x € Ix is a norm if and only if x; is a norm for all p.
Proposition 5.8. Let L/K be a cyclic extension with S a subset of primes of K containing both the
infinite and ramified primes. Then h(G,I}) = [1pes np, whereny = [Lo : Kp].

Proof. Recall that
#H(G,I}) = ]_[ #H (G, L)) = 1,
pesS
since #H (G, Lj) = 1. Moreover, H(G,I?) = [yes H*(Gg, Lg). Now, local class field theory
tells us that #HO(GQ,LE) = (KyN1o/k, (LE)) = ny, so h(G, ILS) = [1pes np- O

We would like to compute h(G, L%). Recall that LS = L N If .

Theorem 5.9. We have that .
h(G,L%) = = .
G.L) ==~ |m

pesS
The proof is left as required reading.
Corollary 5.10. For L/K a cyclic extension of degree n, we have h(G,Cp) = n.

Proof. Let S be a set of primes containing the infinite and ramified primes such that I; = ISL*.
Then the sequence

1 y LS > I y DL* /L — 1

is exact (recall that IfL*/L* = Cr). Then h(G, Cy) = h(G, If)/h(G, L% =n. O

6. THURSDAY FEBRUARY 8

6.1. Class Field Axiom. Recall the following result from last time: for a cyclic extension L/K,
the Herbrand quotient h(G,Cr) = [L : K|, where G = Gal(L/K). To prove the class field axiom,
note that we must show that #H°(G,C;) = [L : K] and H'(G,C.) = 1. We will prove that
H°(G,Cy) = [L : K]. We will also use Kummer extensions.

Let K be a number field with p, c K, where p, denotes the group of nth roots of unity.
Assume n = p*, and let L/K be Galois with Gal(L/K) = (Z/nZ)". Let S be the finite set of primes

S ={p | p|n, o0 and p is ramified in L and Ix = II“EK*},
and let s denote |S|. Also let K° = IIS< N K* denote the S-units in K.

Proposition 6.1. With notation as above, s > r. Moreover, there exists a set T of s — r primes such
that L = K(Y/A), and A is the kernel of the map K5 — [Tper Ko/ (Kp)™.

Theorem 6.2. Let T be as before. Let

s =[5 <[ [Kx ] s

pes peT pgSuUT

and let CK(S, T) = IK(S, T)K*/K* Then CK(S, T) C NL/K(CL) and [CK H CK(S, T)] = [L . K]
Finally, if L/K is cyclic, then Ny /x(Cr) = Ck (S, T).

Assuming the above results, we have the following theorem.
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Theorem 6.3 (Class Field Axiom). For any cyclic extension L/K of number fields, we have that

#H'(Gal(L/K),C) = {[L A
1 ifi=-1.
Proof. Note that it suffices to show that #H°(G(L/K),C) = [L : K], and we do so by induction
on the degree. The base case is immediate. Suppose [L : K| = n, and let M be an intermediate
extension such that [M : K| = p and [L : M| = n/p for some prime divisor p of n. Then we have
the exact sequence

1 —— Cy/Nyym(Cr) —— Cg/Npjx(Cr) ——> Cx/Nyyx(Cy) ——> 1

since Np/x = Nyk © Npjm. For x € Cyy, we have

Nmy/k(x) = Niyx (y) = Nyyx (NLy/m(y),
so Ny (x/Np/m(y)) = 1. Then there exists some z such that x/Ny/y(y) = Np/m(z) (prove this
as an exercise). Therefore, x = N,y (yz), and we have injectivity. Note that Cp;/Ny/m(Cr) =
H°(G(L/M),Cy), Cx/Nyjk(Cr) = H*(G(L/K), Cr), and Cx/Nyk (Car) = H*(G(M/K), Cay).

If p < n, then the result follows from the inductive hypothesis and the above exact sequence,
since [M : K][L : M] = [L : K].

If p=n,thenlet K" = K(y,) and L’ = L(y,). Let d = [K” : K]. Then d|(p — 1) = [Q(p,) : Q].
Since [L : K] = p, we have ged(d, [L : K]) = 1. Therefore, by Galois theory, we have G(L/K) =~
G(L’/K’), where we note that #G(L’/K’) = 0. Now, L’/K’ is cyclic and contains y,. By Theo-
rem|6.2] it follows that #H°(L’/K’) = [L’ : K’] = p. We will prove that #H°(Gal(L/K), Cy) divides
p, from which the result will follow (recall what we proved about the Herbrand quotient). We
claim that H°(G, C) — H°(Gy, Cr/) is injective. We have maps Cx — Cx» — Cx+ /Ny (Cr);
under the composition of these maps Ny x(Cpr) is sent to 1, so the composition factors through
Ck/Np/k(Cp). This gives us the map H°(G1,C) — H°(Gy, Cr/); we now prove it is injective.
Notice that H°(L/K) has exponent p, since x* € Np/k(x) for all x € Cp. Hence, the map
H°(L/K) — H°(L/K) taking u +— u? is an isomorphism, since (d,p) = 1. Let x € H°(L/K)
be such that X = 1 in H°(Gy/, Cr/). Write X = yd fory € H°(L/K) and y = 1 in H°(L’/K’), so
y = Ny g (2') for 2 € Crs. Then

y? = Nioyx (Np ke (7)) = Ny jxe(2') = Ny (Npy (7)),
where Nj//(2') is some element u € Cr, so x = Ny x(u) for u € Cy. O
One consequence of this result is the Hasse Norm Theorem:

Theorem 6.4 (Hasse Norm Theorem). For L/K a cyclic extension, x € K* is a norm if and only if
x is a norm in K;; for all p.

Proof. Let G = Gal(L/K) and Gg = Gal(Lg/K,). We have the following exact sequence

1 > L* > Ir > CL > 1,
which gives an exact sequence
1=H'(G,C) — HG,L*) —— H°(G,I;) = p H*(Gy, Ly).
Therefore, K* /Ny /xL* ~ H°(G, L) injects into 5 K;/Nry/k, (Ly)- O
We now prove Theorem the result used in the proof of the class field axiom.
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Proof of Theorem[6.2 We have the following exact sequence
1 — BT /Ig(S,T) NK* —— BV /Ix(S, T) — I"TK*/Ix(S, T)K* — 1.

Hence, #(I;TK* : Ix(S,T)K*/K*) = [Ck : Ck(S,T)]. Moreover, we also have #(I;"T N K* :
IK(S, T) N K*) — (KSUT : (KSUT)n)‘ Now, KSUT ~ 7251 fin, SO (KSUT . (KSUT)n) = n®" For
the last part, we can directly compute that

QT kD) =] & K" = [ [0 Inlp) = n* | | Inly" = n®.
pesS pesS p

Also, (Cx : Cx(S,T)) = n*/n®*" = n" = [L : K]. For the inclusion Cx(S,T) € Nyx(Cp), let
a € Cx(S,T). We have to check that @ € Ny x(Cp); it is enough to check this locally. For p € S
and ap € (K;)", we have ap = N(Kp({/Ky)), and since Lo C Ky (3/K;), we have oy is a norm in

Kp. For p € T, we have Lg = K, since L = K(X/A) for A c (Ky)". For p ¢ SUT, we have that
Lo /K, is unramified and a; is a unit. Local theory implies that a; is an nth power.
If L/K is cyclic, then

[L: K] < [Ck : Npyk(Cp)] < [Ck : Cx(S,T)] = [L: K],

which forces equality. o

7. THURSDAY FEBRUARY 15

Recall Theorem|[6.3] which tells us that the idele class group satisfies the class field axiom. In
order to apply abstract class field theory, we need two morphisms d : Gg —» Zand v : Cqg — Z.

Proposition 7.1. Let Q/Q be

Q=Q(% | ¢ =1 foralln).
LetT = G(Q/Q)"" ¢ G(Q/Q), and let Q = QT. Then Q is a 7 -extension of Q.
Proof. Note that we may write Q as the injective limit

W= h_r>nQ(§Vn)

Hence,
Gal(Q/@) = lim Gal(Q(¢y)/Q) = lim(Z/nZ)" = Z".

n n

We have Z = Hp Z, (prove this as an exercise). Thus, 7 = Hp Z;, and recall that Z; = Z, X
Z[(p —1)Z for p odd and that Z; = Z, X Z/2Z. Now, we may write

7* =7 x H Z/(p-1)ZxZJ2Z.
p#2

The factor Z is torsion free. Letting T= [1pe2 Z/(p—1)ZX Z |27, We see that T = G(Q/Q)lrs ¢

T.Infact, T is dense in T, i.e., T = T. Because Q7 = of (the fixed field of a subgroup is equal to
the field fixed by its closure), we have

Gal(QT/Q) = Gal(Q/Q)/T = Z.
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In other words, we have a morphism

d:Ga > Gyrjq = Z.
For the Gg-module, let
A= lim CK
H
[K:Q] <00

Note that Ax = AS@/K) = ¢y = Iy /K*.
Now, we would like to define a valuation map
0 : CQ - Z

Let L/K be a finite abelian extension. We define the norm residue symbol Ix — G(L/K) by taking
a — [a,L/K] = [],(ap, Lp/Kp), where (ap, Ly/Kp) is the norm residue symbol from local class
field theory. If L/K is infinite, then we can define

[,L/K] : Ix = G(L/K)

via the compatibility rule [ ,L/K]|s = [ ,L’/K] for L’/K finite. Putting these all together gives a
surjective homomorphism

v:Ip — Gal(Q/Q) ~ Z,
as desired.
Armed with these definitions, we can now prove the statement of global class field theory.

Theorem 7.2 (Global Class Field Theory). Let L/K be a finite extension. We have a reciprocity
homomorphism

rL/K : Gal(L/K)“b - CK/NL/K(CL)-

This map is an isomorphism with inverse
rijx = (LL/K) : Ck — Gal(L/K)®

(in fact this map can be defined from Ix — Gal(L/K)®). Moreover, the following diagram is com-
mutative:

. GLo/Ky)
K =2 G(Lo/Ky)

| |

cx 2% 6Lk

7.1. Brauer Groups. A reference for the following is Weil’s Basic Number Theory. Let k be a
field, and let A be a k-algebra (with unit, not necessarily commutative) that is finite-dimensional
over k.

Definition 7.3. Such an A is called central if Z(A) = k.

Example 7.4. A classical example is A = M, (k), the n X n matrix algebra with entries in k.
Another example is the Hamilton quaternions, where k = R and

A=R(>,j|i*=j%=-1,ij = —ji).

This is 4-dimensional over R. More generally, for any field k with characteristic not 2, fora, b € k*
we can define the quaternion algebra

A=kekiokjokij,
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where we set i = a, j2 = b, and ij = —ij. As an exercise, determine the following: when is
A =~ M (k)? We can rephrase the question as follows: when does

ol Jou], “Jor], Jo

Note that because j* = 1 (in the above example), the a,b € k* fixed previously only depend on
their images in k*/(k*)%. Hence, the above isomorphism holds when a, b € (k*)2.

Proposition 7.5. If A, B are two central k-algebra, then A ® B is also a central k-algebra.
Proof. Let (e;); and (f;); be bases of A and B over k, respectively. Let

x:Zei®yieZ(A®kB),

1

where y; € B. For all b € B, we have x(1 ® b) = (1 ® b)x if and only if

Zei®yib:Zei®byi,

1

which is the case only if y;b = by; for all i, which implies y; € Z(B), so y; = a; € k. Hence,

x:Zaiei®1:z®l
i

for some z € A, then z € Z(A) implies that z = « € k, implying x = 2(1® 1) € k. O

Remark 7.6. Let K — L be an extension of fields. For A a central K-algebra, then A ®k L is also
a central L-algebra.

As a convention, a module M over A is a left-module that is finite dimensional over K (so
1-m = mforall m e M).

Definition 7.7. A module M is called simpleif M # 0 and N C M a sub-M-module implies N = 0
or N =M.
An algebra A is simple if the only two-sided ideals are A and 0.

The study of Brauer groups is the study of central simple algebras over K.
If M is an A-module, then the annihilator of M

Ann(M) ={x € A| xm =0 for all m € M}
is a two-sided ideal. If Ann(M) = 0, then M is said to be faithful (as an A-module).

Proposition 7.8. Let A be a K-algebra with a faithful simple A-module M. Then every left A-
module is isomorphic to a direct sum
Do

where [ is a finite index set and M; ~ M.

Proof. First, we show the result for A. Consider a finite subset {my,...,m,} € M such that
Ann(my,...,m,) = Ann(M). Let n be minimal for this property. Let A; = Ann(mjyq, ..., my),
and consider the submodule M; = A;m; of M. In fact, we can view this as a map A; — M tak-
ing x — xm; with kernel A;_;. Hence, A;/A;_; ~ M; € M. By our choice of n, the quotient
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A;/Ai-1 = M,; is nonzero. Since M is simple, it must be that M; ~ M. We have Ay =0 and A, = A,
so the A;’s give a filtration of A. By induction, we see that the map

A — @M
k=1

given by x — (xmy,...,xm;) is a bijection. It follows that A = A, ~ B;_, M.
Now, let M” be an A-module. Let {m], ..., m;} be a basis over K. We have a surjective homo-
morphism
Ar N M/
given by (x;) = X; x;m}. By what we proved in the preceding paragraph, we have A" ~ M™, so
it is enough to study the kernel of the surjection M'* — M’, which we call K. Let I C {1,...,nr}
be maximal such that K & @ M is a direct sum. For simplicity, let I = {1, ..., j}. We have

K& GJBM,'
i=1

and

J
Ko @ M; + Mj+1.
i=1
By hypothesis, we must have K N Mj,; # {0}. But K N Mj, is a left A-module contained in M.
Therefore, we must have M;,; = K N Mj4q, so Mjy; C K. It follows that K & @I M; = M™, so

M =P M. O

Proposition 7.9. Let A and M be as in the above, and let D = Enda(M). Then D is a finite-
dimensional division algebra over K and A ~ M,(D) (as algebras) for somen > 1.

Proof. Any A-module endomorphism f : M — M has ker(f) and im(f) also as A-modules.
The simplicity of M implies that f = 0 or f is a bijection. We have A ~ M" as A-modules, so
Ends(A) ~ Enda(M™) ~ M,(Enda(M)). Now, D = Enda (M), and

K = Z(A) = Z(Mp(Enda(M))) = Z(Enda(M)) = Z(D),

as desired. m]

8. TUESDAY FEBRUARY 20

Theorem 8.1. A central K-algebra A is simple if and only if M ~ M,(D), where D is a division
algebra over K. The integer n is unique, as is the division algebra D up to isomorphism.

Proof. For the forward direction, note that A simple implies that A has a left simple faithful A-
module. This follows because we can choose a left ideal {0} # I C A of minimum dimension
over K. We see that I is a simple nonzero left A-module. Now, recall that I is faithful if the map
F : A — Enda(I) has kernel zero. Note that ker(F) = Annu(I) is a two-sided ideal of A; hence
ker(F) = 0 or ker(F) = A. But since I # 0, we must have ker(F) = 0. Hence, A ~ M, (D) with
D = Ends(M).

Conversely, suppose A = M, (D). Let e;; € M,(D) denote the matrix with (i, j)-entry equal
to 1 and all other entries 0. Let 0 # a € A, and consider the two-sided ideal (a) generated by
a. Then (a) = A. This follows because e;jaepr = ajrer and at least one such a;, # 0. Hence,
aj is invertible, implying that e, € (a). Thus, A is a simple algebra. The centrality of A follows
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because Z(M,(D)) = Z(D) = K. Let M = Aey;. We claim that Endg(M) ~D. If f : M — M is
a left A-module morphism, then f(x) = ax for a € D. Hence, M is a simple left A-module, and
D = Ends (M) implies D is unique. The uniqueness of n follows from the formula dimg(A) =
n? dim(D). O

Let A/K be an algebra. We define its opposite algebra, A°?, to be the K-algebra with underlying
set A and multiplication a * b = ba, where the multiplication ba is done in A.

Proposition 8.2. Let C = A ®x A°?. For a,b € A, let f(a,b) € Endg(A) be the map taking
x +— axb. Define F : C — Endg(A) by F(a® b) = f(a,b). Then A is simple over K if and only if F
is surjective, which is the case if and only if C ~ Endg (A).

Proof. Let N = dimg (A). Assume that A is not simple: let 0 # I € A be some nontrivial, proper
two-sided ideal. For all ¢ € C, we have I is invariant under F(c). Writing A = I & I for some 1, by
considering F as a block-diagonal matrix we see that F is not surjective.

Now, assume that A is simple. Let C' = ker(F) = Annc(M), where M = A regarded as a
C-module. We first claim that M is a simple C-module. To see why this is the case, note that the
data of a C-submodule is equivalent to that of a two-sided ideal. We can check that Endc(M) = K
(prove this as an exercise). We conclude that M is a simple, faithful left C/C’-module. Hence,

C/C" = My(Endc/c(M)) = My (Endc(M)) = My(K),

and Z(C/C’) = K. It follows that N = dimg (M) = n, so dimg(C/C’) = n? = N? = dimg(C). This
forces C' = 0. O

Corollary 8.3. Now, we profit from our hard work. The following are true:

(1) Let L/K be an extension of fields. Then A is central and simple over K if and only if A;, = AQL K
is a central simple algebra.

(2) IfK — L, where L is algebraically closed, then A is simple over K if and only if Aj, ~ My, (L).

(3) IfA is a central simple algebra over K, then dimg A = n?,

(4) If A and B are central simple algebras over K, then A ®k B is also a central simple algebra over
K.

(5) Suppose that dimx A = n? and that L is an extension of K. Let F : A — M,(L) be a homo-
morphism of K-algebras. Then the a homomorphism of L-algebras F; : A — My(L) is an
isomorphism.

(6) Suppose that K/L is a degree-n extension and that A/K is simple with dimg A = n®. If L’ C A
with L' ~ L, then Ap, ~ M,,(L). In other words, Ay splits.

(7) IfA/K is a simple algebra and a : A — A is a K-automorphism, then a(x) = a”'xa for some
ac A" forallx € A.

Proof. We prove each result one at a time.

(1): F : C — Endg(A) is an isomorphism if and only if F® L : C;, = C®x L — Endj(Ar) =
Endg(A) ®k L.

(2): By (1), A is simple if and only if A} is simple, which is the case if and only if Ay ~ M, (D)
for D/L a division algebra. If L # D, then take £ € D \ L and note that £ : D — D defines
an L-linear map given by multiplication by & By Cayley-Hamilton, & is algebraic over L, which
forces & € L. Therefore, D = L.

(3): This follows from (2).
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(4): We base-change to some algebraically closed field L. By part (2), we have Ay ~ M, (L)
and By ~ M,,(L). Hence,

(A (2976 B) ®L=A; ® QB ~ Mnm(L);

the result follows from (2).

(6): Without loss of generality, we can assume L = L', in which case A is an L-vector space.
Then the map A — M, (L) = End; (A) is an isomorphism by (5).

(7): See page 166 of Weil’s Basic Number Theory. O

Proposition 8.4. If A/K is a simple central algebra, then A; ~ M, (L) for L a separable closure of
K.

The above can be found on page 166 of Weil’s Basic Number Theory.

Proposition 8.5. Let A be a central simple algebra over K. Then there exists a nonzero linear form
tr : A — K (the reduced trace) and a map N : A — K (the reduced determinant) such that for
all extensions L/K and F : A — Endp (M), we have tr(a) = tr(F(a)) and N(a) = det(F(a)). If
A=M,(K),M=K",andF : A — M,(K), then tr is the trace of a matrix and N is the determinant
of a matrix.

8.1. Brauer Groups. Let K be a field, and let A and A’ be two central simple algebras over K.
Then we say A ~ A" (pronounced A is similar to A") if A ~ M,,(D) and A" ~ My (D) for the same
division algebra D. We say that A and A" have the same class; denote this by [A] = [A’]. Let
Br(K) denote the classes of central simple algebras over K under this equivalence.

Theorem 8.6. We have that Br(K) is an abelian group for the following group law:

[A][A'] = [A®K AT].
This operation has inverse given by [A]™! = [A°P] and trivial class 1 = [K] = [M,(K)].
Proof. The product is well-defined: for A ~ M, (D) and A" ~ M (D’), we have D ® D’ ~ M,,(D"),
where D” is uniquely defined. Hence, A ®x A" ~ My, (D”); since D” is uniquely defined, it
follows that the product is well-defined.

The associativity and commutativity are left as exercises for the reader. Recall that C =
A ® A% ~ Endg(A) = M, (K), as desired. O

9. THURSDAY FEBRUARY 22

The following is supplemented by Chapter IV of Milne’s notes on Class Field Theory.

Definition 9.1. Let K be a field and A a central simple algebra over K. Let L be an extension of
K such that A; = A®k L ~ M,(L). Then L is called a splitting field of A, and Ay is a split central
simple algebra.

Proposition 9.2. Let A be a central simple algebra over K. Then there exists a finite separable
extension L/K such that Ay, is split.

Proof. Let K**? denote the separable closure of K, and consider A ®g K**? ~ M, (K**?). Consider
the elementary matrix E;; € M,(K**?); recall that these elements form a finite K**”-algebra basis
for M, (K**?). Now, we can write the image of E;; in A ®x K**? as
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where y € Aand v; € K*P. Let L = K(vg), where k € I;; for all i, j. It follows that L/K is a finite
separable finite extension with A ®x L ~ M,(L), as desired. O

The above proposition implies that, for L/K an extension, Br(L/K) c Br(K), where Br(L/K)
is the set of central simple algebras over K split by L. From the proposition, we have

Br(K) = U Br(L/K).
LcK®eP
[L:K] <00
9.1. Brauer Groups and Cohomology. Let L/K be a Galois extension.

Theorem 9.3. Let A be a central simple algebra over K with K ¢ L C A (L is field that is a
K-subalgebra of A). Then the following are equivalent:

(1) L =Ca(L);

(2) [A:K]=[L:K]%

(3) L is a maximal commutative K -subalgebra.

Proof. See page 130 of Milne’s notes. Recall that [A : K| = [L : K][C(L) : K], so (1) is equivalent
to (2). O

Corollary 9.4. For D a division algebra over k, the maximal subfields containing k are exactly those
of degree A/ D : k|. Such fields are the splitting fields of D.

Corollary 9.5. Let A be a central simple algebra over k. Then L splits A if and only if there exists
B ~ A inBr(K) such that [B: k] = [L : k]2

Corollary 9.6. If A is a central simple algebra over k, then the minimal degree of a splitting field
isy/[D : k], where A ~ M, (D) for D a unique division algebra. This quantity is called the index of
A in Br(k).
Let L/K be a Galois extension. Let
A(L/K) = {central simple algebrasA/K | L c A, [A: K] = [L : K]*}.
Let A € A(L/K) and o € Gal(L/K). We have the following theorem:

Theorem 9.7 (Skolem—-Noether). For simple By, B, C A, a central simple algebra over K, and
f : By — By an automorphism, then f is inner. In other words, f(n) = gng™' for g € A*.

By Skolem-Noether, o from the above is inner. Hence, for all x € L, we have

o(x) = eyxe; "

for ey € A*. For 0,7 € Gal(L/K), we have (o o 7)(x) = o(r(x)) for all x € L, s0 eyorxe,d, =

ese.xe; el Hence, e-'e lesor € C(L) = LN A* = L*. There exists ¢(o, 1) € L* with ¢(0,7)7! =
e-le-legor, SO €50r (0, T) = ese;. Thus, we have obtained a function ¢ : G X G — L*, which is
what we need for Galois cohomology. For 01, 03, 03 € G, we have
-1 _ -1,-1
eUlfszfaxealozag - 6510260-3)(‘653 ealoz'
Some more work shows (prove the following as an exercise) that ¢ (o1, 02, 03) = 1, which is the
case if and only if

01(¢(02,03)) (0102, 03) ' ¢(01,0203) (02, 03) ' = 1,
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implying that ¢ € Z?(G(L/K),L*). Hence, (¢) € H*(G(L/K),L*), and the class (¢) does not
depend on e;. Thus, f; and ¢ differ from ¢ by a coboundary. In other words, o(n) = foxfo™' =
esxe; . Let s = e, f, € L*. Then ey, = f; and

¢f(o,7) = fa_rlfafr = ,U;;e;rlemuaefﬂf = .”c:rl‘!’(o" T)er_l/laer,”f =¢(0,1) [y(;ler_llugeﬂuf],
and e; ' yye; = 071 (11, ) is a coboundary.
We have a map y : A(L/K) — H*(L/L), where A — y(A) its factor set.

Theorem 9.8. We have thaty is surjective and the fibers are isomorphism classes.

Proof. For ¢ : G X G — L* a 2-cocycle, set

Ap) = @Leo

oeG

with multiplication law eye; = ¢(o, 7)esr. The cocycle condition implies that this law is asso-
ciative and that e; = 1 is the unit. In fact, we have that A(¢) is a central simple algebra, and

Y(A(@)) = ¢.
If y(A) = y(A’), we will show that... O

10. TUuESDAY FEBRUARY 27

Let the setup be as above. To check the cocycle conditions, let o1, 03, 05 € Gal(L/K). We see
that

60'1(60'20.3) = eal‘P(62> 63)60'20'3 = 0'1((P(0'2, 0.3))60'160'20'3 = 61(@(0'% 0'3))(P(O—1, 0—20.3)60'10'20'3
is the same as
(ealeaz)edg = (,0(0'1, 02)60102663 = (P(Ul’ 02)(P(O-10-2’ 0-3)60'10'20'33
implying that ¢ € Z%(G, L*) — H*(G,L*).
We claim that y : A(L/K)/~— H*(G(L,K), L") taking A — (¢(0, 1)), is an isomorphism
with a section (for an introduction to Galois cohomology, see Cassels’ and Frolich’s book).

Lemma 10.1. Let A/K be a central simple algebra, with L C A, andn = [A: K] = [L : K|* = n.
Let (e,)o be as before. Then A= @, _; Le,.

oeG

Proof. Because dimy (A) = n, it suffices to show that (e;),ec are linearly independent. Let (ey)ser
be a maximal linearly independent family over L. Let 7 € G \ I. Then e; = ) ;¢; ase, with not all
a, zero. For every b € L,

Z (b)ase, = 7(b)e; = e;b = Z asesb = Z aso(b)es,
o€l o€l o€l
which implies that

Z a,(7(b) — a(b))e, = 0.

o€l

The linear independence of the (e,)ses forces a, # 0 for some o, implying that 7(b) = o(b) for
all b € L, which is a contradiction. m|

Thus, if y(A) = y(4’), then we get an induced isomorphism of algebras f : A = €P Le, —
A" = P Le, taking e, > e, (there is still something to be checked here, in particular that
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[p(o,7)] = [¢'(0,7)]). In the other direction, let ¢ : G X G — L be a 2-cocycle (also called a
factor set). Then define the crossed-product algebra

Ap) = P Leo,

oeG

where ese; = ¢(0,7)esr and o(x)e; = e;x for all x € L.

Lemma 10.2. With notation as above, A(¢) is a central simple algebra over K, L C A(¢), and
[A(p) : K] = [L: K]2

Proof. To see that C(A(¢)) = L, note that L embeds into A(¢) as Le;. Write a € A(¢) as
a= Z ases € A(p)

and suppose that ax = xa for all x € L. Then

Z aaa(x)ea = Z X0g€s,

implying that a,(o(x) — x) = 0 for all x € L. Hence, a, # 0 forces 0 = 1, so « = aje; € L.

Let x € Z(A(¢)). To show that x € L, consider xe, = e;x = o(x)e,. Then x = o(x) for all
o €G,sox € K.

Now let I ¢ A(¢) be a two-sided ideal. Then I is an L-vector space. If there exists o with
e; € I, then I = A(¢) because e;e, = ¢(7,0)esr where ¢(7,0) € L*. Assume I # 0. Let

a:ZaGeUEI

o€]
with |J| minimal. Write & = e5, + - - -. If a5, # 0 for o1 # 0¢. Then for all a € L, we have
o1(a)a —aa = Z ays(o1(a) — o(a))e, € I.
o€]

There exists a such that o1(a) # o(a), implying that the sum in the above vanishes at ¢ = oy,
so we can take J \ {01} as our index set. However, this contradicts the definition of J, implying
a = eg,. O

Lemma 10.3 (Lemma 3.14 in Milne). With notation as above,
Alp+¢') = A(p) & A(¢").
Corollary 10.4. As a result, we have an isomorphism of groups
H*(G(L,K),L*) ~ Br(L/K).
Proof. If A € Br(L/K), then there exists a central simple algebra B such that B~ Aand L C B

with [B: K] = [L : K]% ]
Corollary 10.5. Fix K C K**" a separable closure of K. Then
Br(K)=  lim  Br(L/K)=lim H*(G(L/K),L") = H*(Gal(K**? /K), (K**")").
L/K finite, Galois
LcK®eP

Remark 10.6. We have Br(L/K) ~ H?(G(L/K), L*), and recall that H?(G(L/K), L*) is killed by
multiplication by [L : K]. Hence, Br(L/K) is torsion, implying Br(K) is torsion.
Open problem (period-index problem): Given a central simple algebra A over k, then [A]

€
Br(k) is torsion. If n = [L : K|, where L C D a division algebra, and A ~ M, (D), then n[A] = 0.



24 SALIM TAYOU

The integer n is called the index of A. The period of A is the order of [A] in Br(K). By the above,
we have that the period divides the index; but are they equal? It depends on K. There are many
cases where they are known to be equal, but several other cases where they are not.

10.1. The Brauer Group of Some Special Fields. Let k be a finite field. Then
H*(Gal(L/K),L*) =0

for all finite extensions L/k. Hence, Br(k) = 0. This follows from the following theorem.
Theorem 10.7 (Wedderburn). Any division algebra which is finite as a set is a field.

For R, we have Gal(C,R) = {1,0} ~ Z/2Z. Hence,

H?*(Gal(C,R),C*) ~ R*/N(C*) ~ Z/2Z.

A nontrivial cocycle is given by ¢ : G X G — C*, where
-1 ifp=r=oc;
1 otherwise.

e(p,7) = {

We have A(¢) = H, so we see that the central simple algebras over R are either isomorphic to
M, (R) or M, (H).

11. THURSDAY FEBRUARY 29

Let (K,| - |) be a non-archimedean local field. Let D be a division algebra over K with [D :
K] = n?. For every subfield K C L C D, the absolute value | - | has a unique extension to L. If
a € D\ {0}, then K(«) is a finite extension of K C D, and hence || is well-defined. Thus, we

have an extension | - | : D — Rx. It satisfies the following properties
(1) |a| = 0if and only if & = 0
(2) |apl = la||pl

(3) la + p| < max(|al, ).

As an exercise, show that |a| = [Ny /k () |1/ILK], (3) is also left as an exercise.
Now, let g = |Ox/m| = |«|, where  is the residue field of K. Write |a| = ¢7°"4®), We see that
we have the following diagram

K* ord \ 7

D* ord \ %Z,
since the maximal degree of a subfield contained in D is n. Let
Op ={a e D |ord(a) >0} and p={a €D |ord(a) > 0}.

For all subfields L ¢ D, we have Op N L = Op and p N L = pr. Every Op-ideal of Op is of the
form p” for n > 0. Then Oppx = pxOp = p°¢ for some e > 1. We have e < n, since any element
x € p has ord(x®) € Z, so ord(x) € %Z. The algebra Op/p is a division algebra and it is finite
(it is a x-vector space of finite dimension). By Theorem we have that Op/p is a field. Let
f = [Op/p : k], and let a € Op be such that Op/p = k[a]. Note that f < [K(a) : K] < n, so
f<n

We claim that n* = ef. To see why this is the case, consider the following filtration

pPcplc-.-cpcOp.
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We have that |p’/p™*!| = |Op/p| = ¢/. Hence, |Op/p¢| = |Op/pxOp| = q¢*/ and

OD = é} OKel-.
i=1

Now,
Op/vkOp = @ Ok [Pk
i=1

implying that |Op/pxOp| = ¢" . This implies n? = ef; the inequalities e < n and f < n force

e = f = n. Since e > 1 (unless n = 1), then D is ramified over K (or D = K). Moreover, L = K(a)
has degree f = n and it is unramified over K. Hence, [L : K| = 4/[D : K] implies that L splits D.
Thus, D is split by an unramified extension of K, and we have Br(K) ~ Br(K*" /K).

We can define a map invg : Br(K) — Q/Z in the following way: let D/K be a division
algebra. Let K ¢ L C D be unramified of degree n. Let 0 € Gal(L/K) be the Frobenius auto-
morphism. There exists @ € D such that o(x) = axa™! for all x € L (by the Skolem—Noether
Theorem). Hence, « is determined up to some element of Cp(L) = L. Therefore, ord(a) € Q/Z
is well-defined independently from a. For @’ = ua for u € L, then

ord(a’) = ord(a) + ord(u),
and ord(u) € Z. We define invg (D) = ord(a) € Q/Z.

Example 11.1. Let L/K be unramified of degree n with Frobenius element o € Gal(L/K). Then
p(c', o) = ! ?fl:+J:S”_1;
repg=(n) ifi+j>n-1.
Show as an exercise that ¢ is a cocycle and that invg (A(¢) = 1/n.
Theorem 11.2. The map invk : Br(K) — Q/Z is a bijection.

Proof. Suppose L/K an unramified extension. From local class field theory, we have a surjective
norm map N : Uy = O] — Uk = Og; we also have that H?(G,Ur) = 0. Writing L* = Uy X 7%, we
see that

H*(G,L*) ~ HX(G, %) ~ H*(G, 7),
where in the right-most cohomology the action of G on Z is trivial. We have the exact sequence

0 > Z > Q > Q/Z — 0

and the following cohomological long exact sequence

0=H'(G,Q) —— Hom(G,Q/Z) = H(G,Q/Z) — H?*(G,Z) —— H?*(G,Q) .

We have that
H?(G, Q) =~ {central extensions1 - Q - A —» G — 1}.

We will show next time that
{central extensions1 > Q >A—>G—>1}={1-0Q0->0QXxXG—> G —> 1}.

Hence, we have an exact sequence

0 —> +7Z/Z — Br(L/K) —> 0.
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Taking the inductive limit over all unramified extensions L/K, we see that
Br(K“"/K) = Br(K) ~ Q/Z,

as desired. O

12. TUESDAY MARCH 5

12.1. The Brauer Group of a Global Field. Let K be a number field. There is a map
Br(K) — EB Br(K,)

Recall that Br(K,) ~ Q/Z if v is a finite place, Br(R) =~ %Z/Z, and Br(C) = 0. Hence, we have a
map

Br(K) — @Br(Kz,) —Q/Z,
where the second map is given by }’, inv,,.

Theorem 12.1. The sequence

0 — Br(K) — @, Br(K,) =% q/z )

is exact.
Let L/K be a Galois extension.

Lemma 12.2. The map
Br(L/K) — @ Br(Lo/Kp)
P
is injective.
Proof. Recall that we have
Br(L/K) = H*(G(L/K),L")

and that
Br(Lo/Kp) = HA(G(Lo/Kyp), L)
Assume that L/K is finite and Galois. Then we have the following exact sequence of G(L/K)-
modules
0 > L* > I > CL > 0.

This yields a long exact sequence

HY(G,CL) — H*(G,L*) = Br(L/K) — H*(G,I) =~ @, H*(Go, L)) = P, Br(Lo/Ky). ,

which can be reexpressed as
0=H'(G,Iy) — H'(G,C1) — Br(L/K) —— P, Br(Lg/Ky),

where the first equality follows from Hilbert 90. Thus, we see that the map in the problem state-
ment is injective if and only if H' (G, Cp) = 0, which we proved in global class field theory. Taking
the limit over L implies the desired result, since
Br(K) = U Br(L/K),
L/K finite, Galois

as desired. O
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Corollary 12.3. A central simple algebra over K is split if and only if it splits over K, for all v.

Proof of Theorem[12.1] It remains to show exactness at the middle term of the sequence. The first
thing to check is that for all x € Br(K), then }, inv,(x) = 0. For a quaternion algebra A over K,
if A, is a division algebra, then we say that A, is ramified. The number of places v such that A, is
ramified is even, which implies that ), inv,(x) = 0. ]

Lemma 12.4. Let L/K be finite and Galois. Then for all « € H*(L/K) = H*(G(L/K), L"), we have

Z inv,(a) = 0.

Proof. Recall from global class field theory that for L/K abelian, we have the reciprocity homo-
morphism
rijx = Pk Ik — G(L/K)
factors through Ck if and only if K* C ker(®r,x). We will show that K* C ker(®;/x) if and only
if Y, invy(a) =0
Let y € Hom(G,Q/Z) = H(G,Q/Z), where G acts on Q/Z trivially. The exact sequence

0-Z—-0Q0—-Q/Z—-0
gives us a map

HY(G,Q/7) — H*(G, Z)
taking y +— &,. Then we have the following diagram:

)
K*=H(G, L") —> Ix=H(G,I;) —X3 G

lu(sx lu&x \L}(
(G, L") —— H(G,I) =% 0/;
the right square of the above commutes (see Proposition 3.6 in Chapter 3 in Milne’s notes). The
maps UJ, come from the cup product

H°(G,L*) x H*(G, Z) — H*(G,L*).

Since L/K is cyclic, we have y(G) C %Z/Z; we may choose y to be an isomorphism. Thus, we
can modify the above diagram to be

®
K*/Npjx(L*) —— Ix/Npjx(IL) —F 56

\Luax luéx i)(
HY(G, L") —— H(G,I}) =% 17,7,

the three vertical maps are isomorphisms. From global class field theory, we have exactness in
the middle for L/K cyclic.

Now, we need to show that for any central simple algebra A/K, there exists cyclic L/K such
that Ay is split.

To see that ), inv, (@) = 0 implies K* C ker(®y k), note that for all a € K*, y(®1/x(a)) =0,
which implies ®; /x(a) = 0 and hence that K* C ker(®y/x). O

(Look up Grunewald-Wang Theorem (Milne)).
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12.2. Global Class Field Theory. For K a number field, we have a bijective correspondence
L+— Ny =Ny x(Cr)

between finite abelian extensions and closed subgroups of Ck of finite index. Let m = [[ .o, p"™
be a module in K. Then

Cg =IRK"/K* c Cx
is closed of finite index, and the class field K™ /K corresponds to Gal(K™/K) =~ Cx/Cy.

Remark 12.5. For L/K finite abelian, then there exists m such that C}? C M if and only if
L ¢ K™. The quantity f = ged(m, Ci' C N1) is called the conductor of L; this is compatible with
the conductor from local class field theory.

If m = 1, then we have Gal(K!/K) =~ ClIl< and the following exact sequence

1 —— 0"/0; — [1,R*/R} » Cly > Clg > 1.
The field K! is called the big Hilbert class field of K.

Proposition 12.6. We have that K' is the maximal unramified abelian extension of K.

Definition 12.7. The Hilbert class field H is the field such that Gal(K/K) =~ Clg, the ideal class
group of K. In fact, H is the maximal unramified abelian extension of K where the infinite real
places remain real (i.e., they are split).

How does one go about producing abelian extensions? For K = Q, take m = (m). Then K™ =
Q(&y) is the mth cyclotomic extension; Kronecker-Weber implies that any abelian extension of
Q embeds into Q({,;) for some m. In other words, any abelian extension of Q is contained by
adjoining . This is also known for imaginary quadratic fields K = Q(v-D). For an elliptic curve
over C with complex multiplication (i.e., with End(E) ® Q ~ Q(V-D)), the Hilbert class field H
of K is given by H = K(j(E)). For K = Q(VD) and D > 2, analogous results are unknown.

13. TuEspAy MARCH 19

13.1. Analytic Methods in Algebraic Number Theory. Let K be a number field. The main
object of study in the sequel will be the Dedekind zeta function

1
51((5) = Z W
0£1cOk
where s € C is such that Re(s) > 1. For K = Q, this is just the Riemann zeta function {(s) =

1
ZnZl 2

Proposition 13.1. The series >4 # converges absolutely forRe(s) > 1 and uniformly onRe(s) >
1+ o for o > 1. Hence, { is a holomorphic function on Re(s) > 1 and satisfies

(o=[1i==

p

For more on the Riemann zeta function and its applications to number theory, see Daniel
Marcus’s Number Fields. The Riemann zeta function can be holomorphically extended to the
entire complex plane C except at 1, where it has a pole. Let

e d
ro)= [ el
0 y
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which is absolutely convergent for Re(s) > 0. Thus, I'(s) is holomorphic for Re(s) > 0.

Lemma 13.2. We haveT'(s) = sI'(s), implying T'(s) = T'(s + 1)/s for Re(s) > 0. The above defines
an analytic continuation of I to C with poles at —n for n € N. The residue of the pole at —n is
(=1)"/n!. We also have T'(s)T'(1 —s) = x/sin(zxs). Finally,

2\

I'(s)I'(s+1/2) = o2

I'(2s),

[(1/2) =+/n,T(1) =1,andT(n+1) = n!.

Let
Z(s) = 7T (s/2) L (s),

which is called the completed zeta function. This function will be better behaved than the Riemann
zeta function.

Proposition 13.3. ForRe(s) > 1, we have

« d
26)=3 | (@t -0y

9(,[) — Z eirmzr

nez

where

(0 is an example of a modular form).

Proof. Sketch of the proof:

—s/2 poo d o0 s/2.d
= _8/2 — T -y s/Z_y = Y L _y
Z(s) = 7 PT(s/2)E () = ) A ey Elﬂe i

nx1 nx1

changing variables gives

o0 2 dy 0 2 dy
e yys/Z_ — / e Y ys/z_,
Z/o y 0 Z y

n>1 n>1

where the equality above follows from applying one’s favorite convergence theorem. O

Theorem 13.4. The completed zeta function admits an analytic continuation to C \ {0,1} with
simple poles at s = 0 and s = 1, both having residue —1. Moreover, Z satisfies

Z(s)=Z(1-s5).

Mellin transform: given f : R} — C, the Mellin transform of f is

0 d
1= [ (o= pene
0
assuming that lim, . f(t) = f(o0) exists and the integral converges.
Theorem 13.5 (Mellin Principle). Suppose we have continuous f,g : Ry — C satisfying the
following properties. Suppose that f(y) = ag + O(e™¥") asy — oo and g(y) = by + O(e™¥") as
y — oo. Next, assume that f(1/y) = cy*g(y) for some c # 0 and k > 0. Then the following hold.

(1) L(f,s) and L(g, s) converge absolutely and uniformly on compact domains of {s € C | Re(s) >
k}. In particular, L(f,s) and L(g, s) are holomorphic on Re(s) > k.
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(2) L(f,s) and L(g,s) admit holomorphic extensions to the entire complex plane, except at 0 and
k. At 0 and k there are poles with residues Ress=o(L(f,s)) = —ao, Ress=(L(f,s)) = cby,
Ress=(L(g,s)) = —bo, and Ress—x(L(f,s)) = ao/c.

(3) Functional equation: L(f,s) = cL(g,s).

Proof. Write
L= [ (@ -reonw
0
Near oo, the integrand is O(e™#¥")y* /y, which is integrable near co. Near 0, we make the change
of variables y = 1/y and write
c

11 1 a c a c
(f(l/y)—ao)Eg = (cykg(y)—ao)ﬁ = yE (g(y) - j) = (g(y)—bo)yﬁﬂ‘*‘(’?o - j) Ik

The first summand in the right-hand side of the above is O(e_ﬂya), which is integrable near oo,
and the second summand is integrable for Re(s + 1 — k) > 1. Therefore, uniform convergence
implies that L(f,s) and L(g, s) are analytic on Re(s) > k.

Writing

! d 0 d
L(f,5)=/0 (f(y)—f(<><>))ysgy+/1 (f(y)—f(w))ysgy

S o) — bk o [ (epe - %) _4Y ") — Floonys Y
c/1 (9(y) — bo)y y+/1 (Cbo yk) —k+/1 (f(y) — f(e0))y Y’

ys+1

as

which can be reexpressed as

agp Cb()

- k—sdy ® sdy
e [ o -gni= L [ - peony L -2 -

Replace f by g, ag by by, by by ay, and ¢ by 1/c to yield a similar expression which implies the
functional equation. The integrals in the above expression are entire functions, which tells us the
residues of the poles. ]

Armed with the Mellin principle, we return to studying the completed zeta function

LT 29y
26)=3 [ (@t -0y,
Note that - J
_ N 1yl s4Y

22(25) = /0 (0(iy) = Dy

is the Mellin transform of f(y) = 6(iy). We have f(y) = Y,z e~™'V, and 0(r) = X, e’
converges for Im(z) > 0 and is holomorphic on H. We are interested in the restriction of 6 to the
imaginary axis. By Poisson summation, we have

1 1
) = 1 (;)

In particular, we have k = 1/2, ¢ = 1, and

fly) =1+ ) ™,

n#0
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which is O(e™"Y) as y — oo. Thus, we may apply the Mellin principle, which implies the desired
properties of Z(s).

Corollary 13.6. The Riemann zeta function {(s) has a holomorphic continuation to C \ {1} with a
simple pole at s = 1 with residue 1. Then

{(1-s)= (Zi)sr(s) cos(ms/2){(s).
Proof. Write Z(s) = 77%/?T'(s/2){ (s) and use Z(1 —s) = Z(s). O

The discussion in this section is adapted from the last chapter of Neukirch.

14. THURSDAY MARCH 21
Remark 14.1. We can compute the values of the zeta function using the Bernoulli numbers:
{(1 — k) = —Bg/k. From this, we get
(2 7T)2k
2(2k)!
which gives us the famous formulas }; # =?/6, > # etc. The values of { at the odd numbers

are far more mysterious. It is a result due to Apéry that {(3) is irrational. See section 1 of the last
chapter of Neukirch for more details.

{(2k) = (~1)F!

Bok,

14.1. Dirichlet L-Series. Let m > 1 and y : (Z/mZ)* — S' = {z € C | |z| = 1}, which is called
a Dirichlet character mod m. We can extend y to the integers by setting y(ninz) = y(n1)y(n2),
where y(ny) = y(ny) for (n, m) = 1 and where y(n;) = 0 for (n;, m) > 1. To y, we may associate

the Dirichlet L-series )
n
L(xs) =) .

n>1 n
for Re(s) > 1. Note that if y = 1 is the trivial character for m = 1, then L(1, 2) = {(s).

For y : (Z/mZ)* — S!, we say that y is primitive if y does not factor as y : (Z/mZ)* —
(Z]dZ)* — S* where d|m and d < m. In other words,  is primitive if there is some u € (Z/mZ)*
not congruent to 1 mod m such that u — 1 mod d but y(u) # 1. The smallest m such that
x: (Z/mZ)* — S is primitive is called the conductor of .

Proposition 14.2. We have that L(y, s) converges absolutely and uniformly onRe(s) > 1+ 6 for
& > 0,50 L(y,s) is holomorphic on Re(s) > 1 and

1
L) =] [

P

The proof of these results is almost exactly the same as the analogous proofs for the Riemann
zeta function.

Theorem 14.3. L(y, s) admits a holomorphic continuation to C\ {1} with a poleats = 1. If y # 1,
then L(y, s) is holomorphic on the entire complex plane.

Form > 1and y : (Z/mZ)* — C given by y(x) = 1, we have

169 =[] 17 =§<s>ﬂ(1—f§).

plm plm
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More generally, for y a character mod m and y’ a primitive character mod d that comes from y,
we have

, 1
L(xs) =L(s) | | (1 - —s).
plm.pd P
Ultimately, this integral representation of L(y, s) will allow us to apply the Mellin principle.
Definition 14.4. We define the exponent of y as

x(=1) = (-1)“x(1),
where € = 0 or € = 1. In the former case, y is called an even character; in the latter, y is odd.

We can extend a character y to be a function of ideals by
n €
x((n) =xn) |—| -
|n|
Such a character is called a Hecke character (or, in German, Grofiencharaktere). Let

I'(x,s)=T (H—e) = /0o e—yy(s+e>/2d_y_
2 0 ”

We have

(m)(s+6)/2

oo d
T(x.s)L(x.s) = / ZX(n)nee_”"zy/my(s+6)/2—y.
0 n=1 y

Define the following theta series:

0(x.2) = ), x(mn‘e™ /™.

nezZ
If we set
g(y) = > x(mnce™mim,
n=1
then

0(x.iy) = x(0) +29(y).
If m = 1, then replace y by 1, and we get the usual Jacobi theta function 6(1, z) = 0(z) (introduced
previously).

Definition 14.5. The completed L series is A(y,s) = Lo(x,S)L(, s) for Re(s) > 1, where

LaGes) = (2) )

T
is the Euler factor at oo.

We have
1 /m\e/2 [ o /2d
29 =5 (2)7 [ 00 - xpyeroreL
m 0 Yy

Proposition 14.6. Fora, b, € R with u > 0, we have

ey(a’ b, Z) — Z eni(a+g)2z+27ribg
gepz
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converges absolutely on Im(z) > 0 and uniformly onIm(z) > §. We have that

—Zmab \/_

0u(a,b,-1/z) = ——0/,(=b,a,z).

Proof. The basic idea is to use the Poisson summation formula. O

If we differentiate 0,,(a, b, —1/z) with respect to z and define

€

@2 = iy da

0,(a,b,z),

then
+1/2

05(a.b,-1/2) = (e~ (2) 76 (<boa2).

Proposition 14.7. Let y be a primitive character. Then

e+1/
o1/ = T2 (5) " oz

where
m-—1
() = ), x(0)e I
0=0

and |t(x)| = V/m (see Neukirch or Marcus for an explicit formula).
Proof. We have that

0(x.2) = ). x(nyne™/m = Zx(a) D (a+g)eritoraraim Zx(a)Qe (a,0,2/m).

neZ a=0 gemZ
Making the substitution z +— —1/z gives the desired result. O

Theorem 14.8. If y # 1 is a primitive Dirichlet character, then A(y,s) has a holomorphic contin-
uation to C and satisfies the functional equation

A(x,s) =W(A(L1-s),

where
t(x)

i€Vm

W(x) =
fort(x) the Gauss sum. Note that |[W ()| = 1.
Proof. We simply check that the Mellin principle applies. Note that
0(x.iy) = x(0) + O(e™™/™).

We see that y(0) = 0 when m > 1. The nontrivial step is studying the behavior of 0(y,i/y).

Recall that SL,(R) acts on the Poincaré upper half plane by z — ?ZZ Given some

[Z Z] € SLy(R)

a modular form is an f : H — C such that

f(“”b) = (cz+d)f(2).

cz+d
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In particular, if we consider the function H — H taking z — —1/z (on the imaginary axis, this is

iy — i/y), then f(-1/z) = if(z).
To apply the Mellin principle, set

1 I 6/2
= (Z) o(y.i
fw) =3 (%) 0y
and . P
ez
9w =5 (=) o).
and note that this proves the theorem. ]

15. TUESDAY MARCH 26
15.1. Dedekind Zeta Function.
Definition 15.1. Let K be a number field. The Dedekind Zeta function is defined as
1 1
Go= Y Loy L
0£ICOx Ny 0£IcOx Ok /1)

Proposition 15.2. We have that (i is absolutely convergent and uniformly so on Re(s) > 1+ 6.

Moreover, )
{k(s) = l:[ TN~

Proof due to Marcus. Let i(n) = #{I C Ok | |Ok/I| = n}, and recall that ¢(n) = >;_ i(k) =

O(n'*%). We can write
Gi(s) = Y 2l ~ o) = )

n>1 n>1

some more work gives the result. m]
Theorem 15.3. The Dedekind zeta function admits a meromorphic continuation to C \ {1}. At 1,
{x has a simple pole such that

Ressoy (¢x) = 2 (27) ki Reg(O)|

v|Disc(Ok)wk

where ry and ry are the number of real and complex embeddings of K (modulo conjugacy, so that
[K : Q] = r1+2r3), hi is the class number, and wk is the number of roots of unity in K. Recall that O,
maps into R"*"2 via the logarithm; its image A, which lies in R""*271 = {(x,...,x¢) | X;xi = 0}
is discrete and cocompact and thus a lattice. The regulator is the volume of the fundamental domain
in the resulting lattice |Reg(Ok)| = vol(R"*"271/A).

Moreover, {x has a functional equation relating s with 1 — s, which relies on integral formulas
and the Mellin transform.

More generally, let m C Ok be an integral ideal, and let J™ be the set of ideals of K coprime
tom. Let y : J™ — S! be a character and associate to y the Dirichlet L-series

x()
N(I)s

L(y,s) =
0£IcOk

(if (I, m) > 1, then we set y(I) = 0).
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Question 15.4. (Hecke) When does L( x, s) have an analytic continuation and functional equa-
tion?

Definition 15.5. A Groflencharakter modulo m is a character y : /™ — S! such that there exist
xf: (Ox/m)* — S'and yo : Ky — S, where

KR:K®@R=HK,:R“ x C's,
T

such that y((a)) = xr(a) Y~(a) for all a € Ok with (a, m) = 1.
15.2. Ideles and Characters.
Definition 15.6. A Hecke character is a character of Cx = I/K, where I is the group of idéles of

K. In other words, it is a continuous homomorphism y : I — S! taking K C I — 1. Equivalently,
¥ is a continuous homomorphism y : Cx — S?.

Let m = [ ],y P, where ny, > 0 and ny = 0 for p|oo. Let T = I}“ X I, where I}“ = [0 Up(np)
and I = [])e Ky = K. We call m a module of definition of y if X(I}") =1

Lemma 15.7. Every Hecke character admits a module of definition.

Proof. Restrict y to ]_[p}(oo Up, which, recall, is compact and totally disconnected. We see that its

image in S! is compact and totally disconnected and therefore finite. Thus, ker(y) C [Tpyeo Up(n”)

where ny, = 0 for almost all p, and we may take m = [, Uén”) as our module of definition. O

Hence, y : Cx = I/K* — S! has X(I}") = 1, which descends to y : C(m) = I/I}“K* — St
We construct a Groflencharakter mod m. For every p [ oo, let m, be a uniformizer of K,. Let
¢c:J™— C(m)takep — (mp) = (1,...,1,m,1,...). Note that because I}" contains the group of
units for all p / m, we have that c is independent from the choice of 7.

Theorem 15.8. The composition y oc : J™ — C(m) — S! yields a one-to-one correspondence
between Hecke characters modulo m and Gréfiencharakters modulo m.

Proof. We rely on the following exact sequence
1 —— KW /O™ 5 ™ x (O/m)* x K3/O™ — c(m) — 1,

where O™ = {a € O* | a=1 mod m}, K™ ={c/d | c =d mod m}, and the map K™ /O™ —
J" x (O/m)* x K /O™ is given by

a— ((a)",a mod m,a mod O™).

To see exactness in the middle, suppose that (I,b,c¢) +— bcl = 1. It suffices to show that I is
principal.

Given a Hecke character y : C(m) — S', we have y o f : J™ x (O/m)* X Kp /O™ — St
is a character vanishing on K™ /O™, If the components of these characters are y’ : J™ — S,
xr : (O/m)* — S' and yeo : K, /O™ — S, then x'((a)™") xf(a) xeo(a) = 1 if and only if
chi’((a)) = xr(a) x(a). Hence, y’ is a Grofiencharakter modulo m.

For the other direction, y : J™ — S! can be written as the product of ys : (O/m)* — S and
xf : K /C™ — S'. Then we have a map (X, xeo, xf) : J™ X (O/m)* x K, /O™ — S'; this gives us
our desired Hecke character. O

Theorem 15.9. If y is a Hecke character, then L( x, s) admits a meromorphic continuation to C with
a functional equation.
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16. THURSDAY MARCH 28

The following presentation of Hecke’s approach to proving the functional equation for the
Dedekind zeta function is adapted from Neukirch.

For K a number field and {x(s) the corresponding Dedekind zeta function, we can consider
Kr = K ®g R, which can be written as R x C"?, where r; and r, give the number of real and
complex embeddings of K, respectively. This further maps into K¢ = K ®g C = C" x (C?)"2,
where R < C in the usual way and C — C? by z — (z,z). The maps

K — Kr — K¢
restrict to give maps
Ox — R x C? — C" x (CH",
where recall that the image of Oy is discrete and cocompact (and hence a lattice).

Let X be a finite set with an action of Gal(C/R) (eventually we will set X = Hom(K, C)).
Write Gal(C/R) = {1, i}, where i(z) = z. Let n = #X (in our example, n = r; + 2r;). Let

C= HCT = {Z: (Zr)reX | Zr € C}:
teZ

where each C, ~ C. Note that C = C" X (C?)" and that an arbitrary element of this space can
be written as z = (z),, X (21, 2z2)r,- There is a conjugation action (i.e., action of Gal(C/R)) on C
given by z = (z),, X (z1,22),. For z € C, we define

z = (z7),

Z" = (Z?),

2= (zy).
Note that z = *z*. Let )

R = ={zeC|z=7z}

[ e
T

It is straightforward to check that an element in this space is of the form (z),, X (z1, z2),,, where

z € R and z; = z3, so R = Kg is a Minkowski space. We define trace tr : C — C and norm

N : C — Cmaps (z;) = X,z and (z;) — [],z;, respectively. There is also a Hermitian
product on C given by

(x,y) = > % = tr(x"y);

this restricts to a scalar product on R. We remark that (xz,y) = (x,*zy) for z € C. Define
R:={x € R| x=x*} = R" X (Agr)", where A is the diagonal embedding of R into C?. Finally,
define Ry = {x € R | x; > 0}. Let | - | : R* — R} be given by x = (x;) — |x| = (|x;]). We also
have a map log : R* — R. given by x = (x;) - log(x) = (log(x;)).

We also have a notion of Poincaré Half Space H = R, + iR} = H™ X (Ay)™. Let Re(z) =
(z+72)/2and Im(z) = (z —2)/(2i). Let H = {z € C | z = z*,Im(z) > 0}. As an exercise, prove
that z € H ifand only if —1/z € H. If z = (2;), p = (p;) with p, € C, then

2 = (2£) = (ePrlo8%),

where we take the usual branch of the logarithm log : C \ R — C with log(1) = 0.
In a sense, most integral formulas rely on the Poisson summation formula. Let f : R" — C
a Schwarz function (recall that the space of Schwarz functions S(R") is the set of f such that
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D xeRn |P(x)‘3jc—{:| < oo forall @ = (a3, ..., a,) and all polynomials P). The Fourier transform of f
is given by

F) = | flx)e iy,
Rn

andfe S(R™). The usual example is h(x) = e 7*); here h = h. For A : R" — R" linear and
invertible, we can set fy(x) = f(Ax); here

fao) = —

x) =

A det(A)
Let I' ¢ R" be a lattive (i.e., a discrete abelian subgroup that is cocompact; equivalently, I' ~ Z"
and R" = T ®z R). Optionally, we can also require the inner product on R" to restrict to a
Z-valued pairing on I' X I.

F((AHx).

Theorem 16.1 (Poisson formula). For f € S(R"), we have

1 —~
20 = g 2 0

Ael AeTV
whereTY = {y € R" | (x,y) € Z forallx € T} is the dual lattice.

Proof. Identify I' = Z" and let
g(x)= D f(A+x).

Aezn

Note that g is Z"-periodic; moreover, g is the sum of its Fourier series. Precisely, we have, for
n=1,

g(x) — Z é*(n) eZﬂinx,

nez
where

1
7 = [ goe .
0

For arbitrary n, this becomes

g(x) = Y Gly)e i,

Aezn
where

g = / g(y)e M gy,
(R/A)

We may rewrite the above as

i =), /Rn/,\f (B+y)e "M dy =

pezr

Z //1 f(y)e—Zm'(A,y) eZm’(A,ﬂ)dy.

ﬂEZ" +Rn/A

Since (A, ) € Z, the above simplifies to

fye M dy = F(R);
Rn

we may conclude the theorem (at least in the case A = Z"). ]
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Let I' ¢ R = KR be a lattice. We can define the theta function

@1"(2) — Z eii‘[(ﬂz,ﬂ),

Ael
where z € H. More generally, for a,b € R and p € [], Z, we can define
@?(a, b, Z) — Z N((Cl + A)p)eilr((a+/1)z,a+/1)+27ri(b,/1>.
Ael
Let fy(a,b,x) = N((x + a)P)emlarxar+27ibx) for g b € R and p admissible. In other words,
pre{0,1}ifr=7and p,pr=0ifr # 7.
Proposition 16.2. With notation as above, we have f, € S(R) and

fly) = [P D] £ (b ay).

Theorem 16.3. With notation as above, we have that ©F (a, b, z) converges absolutely and uniformly
on compact subsets of R X R X H.

Moreover,
Or(-1/z) = M@ (=)
r vol(T) =V
Proof. Apply Poisson summation to f;(0, 0). ]

16.1. Gamma Factors. Let

® d
I'(s) = / ey’ — /
0 y

for s € C and Re(s) > 0. In general,

R = ()" x (Agy)",
which is contained in (R%)™ x (R%)" by the map (y,y) + y?. Since R} is endowed with a
Haar measure, we can pull back the product Haar measure to R}, which we denote using %y =

H(Vl,rz) %
Definition 16.4. For s = (s;) € C with Re(s;) > 0, define

dy "
I'x(s) :/ N(e ¥y )—= = | [T(s,) x| |22 (s, + 55),
. ; l_[ . ]_[ »+5p
where p = {7, 7}.

17. TUESDAY APRIL 2

Let K be a number field. Rewrite the Dedekind zeta function as

Gk (s) = Z Z Z ()s

0#£ICcOk beCl(K) ICO

for Re(s) > 1. We introduce, for each b € CI(K),
1
b,s) = —
k(b,s) E N

ICOK
[I]=b

and note that > ¢ (s) = Xpeci(k) {k (D, $).
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Lemma 17.1. Let a C Ok be an integral ideal such that [a™'] = b. Then {I C Ok | [I] = b} isin
bijection with a* /Oy, where a* = a \ {0} and Oy, is the group of units of Oy.

Proof: If [I] = b = [a™!], then al = (@) C a, implying that « € a \ {0} and I = aa™!. Since
I = a’a}, it follows that aa’ € a*/ OI*<. The other direction is similarly straightforward as is left
as an exercise for the reader. i

Using this lemma, we may write

1 . 1
w9 2 N N 2 W@

aca*|O* aca* /Oy

We have Ox — Kr = R X C"? ~ R; the image of Ok under this embedding is a lattice, since
it is discrete and cocompact. Similarly, the image of a € Ok in R is a lattice. We would like to
determine vol(R/Ok) = vol(Og) and vol(R/a) = vol(a). Since vol(Og) is the determinant of
the images of a Z-basis for Ok in R, we see that vol(Ok) = |Disc(Oxk)| = dg. Moreover, since
a C Ok, we have that vol(R/a) = vol(a) = N(a)?dx = d,. Consider the Theta series

1/n

O(a,z) = @)a(z/d;/”) _ Z 22/ " x)
X€a

Recall that
y, s 4Y
Ix(s)= [ N(eVy’)—.
R: Y
For each x € a C Ok, we have

N(a)* /n d
|dK|s7T_ner(S) (a) — / e—;r(xy/dtl, ,x>N(y)s _y
* Y

N(x)Zs

by making the change of variables y +— r|x|%y/ dé/ ". Summing over x € a, we obtain

il T () (b, 25) = / sNw Y,
R* Yy

+

gy)= Y euld,

x€a*|O*
Let Zo(s) = |dx|*/?77"/2Ik (s/2) be the Euler factor at infinity, and let

Z(b,x) = Z(s)k (b, s).

where

Then p
2029 = [ gNe L

This is almost what we need to apply the Mellin transform; the only issue is that g is a sum only
over a*/O*. Note that O C R* C R} is sent to the norm-1 hypersurface S = {x € R} | N(x) =
1}. Composing with log embeds Oy as a hyperplane in R X R™. Every y € R} can be written as
y = xt'/" where t = N(y) and n € S. Then R* = S x R¥, which induces a Haar measure on R*
dy/y = d*x X dt/t, where d*x is the Haar measure on S that makes the equality valid. Choose F
a fundamental domain for the action of |OI*<|2 in the following

log : Ri — R x R™,
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under which S is mapped to a hyperplane H = {}}; x; = 0}. A theorem of Dirichlet tells us that
log(|O|) is a lattice in H, and we see that F is the preimage of 2 times the fundamental domain

for log(|0g|) in H.

Proposition 17.2. With notation as above,
Z(b,2s) = L(f,s)

and

() = fr(at) =

where 1(K) is the roots of unity in Ok.

O(a, ixtl/”)d*x,
#u(K) /F

Proof. Decompose R} = S x R} and write

dt ® n dt
Z(b, 23) — / g(y)N(y)sd*x_ — / / Z e—ﬂ'<0y/d;/ ,U)d*x s
SxR* t 0 t

S vear /O
Writing
/ 3 ooyl o) e _ o~ oex(t/dg) /" 0c) _ / 3 st/ )In0) g
vea 0" #'U(K) ee()* vea /0 #“(K) oear

we see that this is

O(a, ixt!™) = 1d*x = £(t) = (oo,
#u(K) /F / /
as desired. O
What’s left? We still need to show that
vol(F) = 2" 'Reg(Ox),

where recall that the regulator is the volume of |O¢| in R"*2~1 We also need to show that

fr(a,1/t) = 2 fp ((aD) ™ 1),
where D is the different ideal D = {x € K | tr(xy) € Z,y € Ok} and |D~!/O| = |Disc(Ox)|.
This allows us to apply the Mellin principle.

Theorem 17.3. With notation as above, Z(b, s) admits an analytic continuation to C \ {0, 1} with
functional equation Z(b,s) = Z(b',1 — s), where bb’ = Diff(Ok). The function has simple poles at
s =0 and s = 1 with residues 2"R/#u(K).

18. THURSDAY APRIL 4

18.1. Tate’s Thesis. A good reference for the following is the paper Théorie de la dualité et anal-
yse harmonique by Canton-Godement (1947). The first input is the local theory. Let K be the
completion of a number field at a prime so that K is either R or C in the archimedean case
or K is a finite extension of Q, (i.e., a local field of characteristic 0) in the nonarchimedean
case. Recall that in the nonarchimedean case, K has finite residue field. In this case, we write
Ok = {x € K | v(x) > 0}, which has maximal ideal p = {x € K | v(x) > 1}. For « € K, let

|a| if a € R;
la| = 1 || ifa e C;
N(p)™@ = |0/p|™@ ifK islocal.
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Note that K is a locally compact abelian group; as is K*.
Next we study additive characters of K = (K, +), i.e., continuous y : K — S! with y(x +y) =

x(x) x(y).

Lemma 18.1. Let y be a nontrivial character of K taking { v~ y({). Then, for eachn € K, the map
Xy taking { v x(n{) is also a character, and the map ¢ : K — Hom(K, S') = K" taking n — x,
is an isomorphism.

Proof. 1t is straightforward to verify that y, is clearly a character. To see injectivity, note that
Xy = 0 implies that y(n{) = 0 for all { € K. Hence, y(n{) = 0 for all { € K, which forces n = 0.
Next, we would like to prove that im(¢) is dense in K. This relies on the fact that (K")" ~ K,
since K is a locally compact abelian group. If im(¢) is contained in some closed subgroup A C K",
then there exists nontrivial f : K¥Y/A — S!, where f takes y — y(a) for some nonzero a € K.
Since f|4 = 1, we have that y(na) = 0 for all n € K, which forces a = 0.
The rest is left to the reader. O

We need to fix a special nontrivial character of K to complete the identification K ~ K".
For p > 0 prime, let A : @, — R/Z be the principal part of x, i.e., the A(x) € Q such that
x — Mx) € Z,. We remark that Q,/Z,, = li_r)nn %Z/Z. Since %Z/Z = R/Z[p"], there is a natural
containment Q,/Z, C R/Z; A factors through Q,/Z, (note that A is just the natural quotient
map Q, — Q,/Z,). For R,let A : R — R/Z be given by x +— —x mod 1. For C, we have
[C:R] =2;1let A(Q) = Ma +a).

If [K:Q,] < oo, then let

A(D) = Mtrg/q, (D))

Then the character K — S! taking ¢ — ") is a nontrivial additive character.
Theorem 18.2. We have that K ~ K" via
éf — (’7 s ezmn(r]{)) ]

Definition 18.3. The different of K (nonarchimedean) is the ideal Dk of Ok such that Z)Izl =
{x € K| trk/q,(xy) € Z, for ally € Ok}.

Then we see that 77 > €27"(¢%) js trivial on Ok if and only if € Dy Let p be a Haar measure
on (K, +). For K a locally compact abelian group, we have the following theorem).

Theorem 18.4 (Bourbaki, Topology 3; Folland Abstract Harmonic Analysis). For K a locally
compact group, there exists a unique measure, up to scalar multiplication, such that the following
hold.

(1) u(T) < oo for T compact;
(2) forx € K and U C K measurable, we have u(xU) = p(U) (i.e., u is left-translation invariant;
similarly, there exists a right Haar measure as well).

Lemma 18.5. For every nonzero @ € K and every measurable U, define ji,(U) = p(aU). Then
there exists ¢ : K* — R such that p, = ¢(a)p. In fact, p(a) = |a|.

Proof. We see that p, is also a Haar measure. By the uniqueness of the Haar measure, we must
have yi, = p(a)p. If K = R or C, then we may use the usual formula for the Lebesgue measure.
For a p-adic field K, let 7 be a uniformizer. Then & = #"u for a unit u € Op. For simplicity,
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suppose n >, and note that O = 7n"Og C Og. Note that |Og/n"Ok| = |Ox/7Ok|", so Ok =
Uier (7" Ok + v;), where |I| = |Okg/nOk|". Thus, we see that

1(Oxk) = |Ok/7nOk|" (7" Ok);
therefore, p1(aOxk) = |a|u(Ok). O
If f € L'(K), then
[ 1@ = el [ satiine),

In condensed form, du(al) = |a|du({). We pin down unique choices of Haar measures in the
following way: d{ is just the ordinary Lebesgue measure on K = R, so this is just the Haar
measure with p([0,1]) = 1. If K = C, then d{ is twice the usual Lebesgue measure on C, so
u([0,1]?) = 2. If K/Q, is p-adic and [K : Q,] < oo, then d{ is the unique Haar measure such that

p1(Ox) = (N(Dx)) ™2,
Theorem 18.6. The Fourier transform of f € L*(K) is

Fn = [ e
Moreover, if f is continuous and f € L*(K), then

£0) = / Fpemisen gy = f(o).

18.2. Multiplicative characters. There is an obvious character v : K* — R taking a +—
|a|. Note that U = ker(v) is a compact subgroup of K*. More generally, we are interested in
continuous group homomorphisms ¢ : K* — C*. These are called quasi-characters.

Definition 18.7. We say that c is unramified if ¢|y = 1.

Lemma 18.8. The unramified quasi-characters are exactly the maps of the form c(a) = |a|® for
s € C. (IfK is archimedean, then s is unique; if K is nonarchimedean, then s is determined up to

2ri/q.)

Proof. If K is R or C, then ¢ : K* — C* is equivalent to a map ¢ : R} — C*, since K = U X R}.
Using exp, we can lift to the universal cover and get a diagram

R——C

\Lexp \Lexp

R — C.
This diagram gives us the result.
For K a p-adic field, K* = U x 7%, so ¢ : 77 — C*. Let  be the image of ; note that
a" = p" ]
19. TUESDAY APRIL 9

We continue our discussion of unramified quasi-characters.

Theorem 19.1. The quasi-characters of K* are of the form a — c(a) = ¢(a)|a|*, where a = ap,
a€U,andU = {a | |a| = 1} — S! is a character.
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We determine U for each possible K. If K = R, then U = {#1}and ¢ : U — S! takes o > 1
orar a. IfK=C,thenU = S',and ¢ : U — S! takes a + «" for some n € Z by elementary
Fourier analysis. If K is some p-adic field, then let Og be the ring of integers and p € Ok the
maximal ideal. We have U = 01*0 and 1 + p¥ for v > 0 form a system of neighborhoods of 1.
For ¢ : U — S! a continuous character, then ¢(1 + p") = 1 for n sufficiently large. Choose n
minimally such that ¢(1 +p") = 1 and é(1 +p™') # 1. Then f = p" is called the conductor of
¢, and thus ¢ descends to ¢ : U/(1 + f) — S!, where U/(1 + f) is a finite abelian group. Recall
that U = Oy = (1 +p) X F; and that 1 +p"/(1 + p™?!) = F,. For a quasi-character ¢ : K* — C*,
we define the exponent of ¢ to be 0 = Re(s), where |c(a)| = |¢|” and ¢ = ¢(—)| — |* for s € C or
s € C/2mi/qZ. Note that c is a character if and only if 0 = 0.

Now, we would like a Haar measure on K*. We have a Haar measure d¢ on K; changing
variables gives us d(aé) = |a|dé. For a € k*, we define d*a = da/|a|. Since

£ ey - 206

|pa

it follows that d*« is a Haar measure on K*. This works for K = R or K = C. If K is a p-adic field,

then we normalize differently and set d*a = qill%'i

=d*a,

Lemma 19.2. IfK is a p-adic field, then

/d*a = (N(D))'?
U

/d*(x— /d(x
U |Of|

Recall that fOK dé = N(Z))_l/z. Moreover, we know that
Ok = O x " =| |Oxn"

Proof. We have that

nz=0
Therefore,
vol(Ox) = Y vol(Op)g ™" = qf —vol(0;);
n=0
putting this all together gives the result. m]

19.1. The Local {-function and the Functional Equation. Let f : K — C take £ — f(¢),
and denote its restriction to K* by a — f(«). Let

Z={f:K—->C| f,f e L'(K) continuous and f(oc)|a|0,f(oc)|a|0 € LY(K) for any o > 0}.

Let ¢ be a quasi-character of positive exponent. Define
(0= [ f@e@da
K*
We call { a {-function of K.

Lemma 19.3. We have that { is a holomorphic function in s when Re(s) > 0.

Remark 19.4. Recall that c(a) = ¢(@)||°. There is an equivalence relation on quasi-characters
c; ~ ¢y ifand only if ¢1 /c; is unramified. The equivalence classes are given as follows: fixc : U —
S!; the quasi-characters equivalent to ¢ are given by ¢(—)| — |°.
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Proof. Differentiate under the integral; this is left as an exercise to the reader. O

We would like to show that the {-functions of K have meromorphic continuations and func-
tional equations.

Lemma 19.5. Let C be a quasi-character of exponent o € (0,1). Let é(a) = |a|c™ () fora € K*.
Theorem 19.6. For all f,g € Z, we have that
{(£.05(4.0) = {(£.8)¢(g.0).
(Le, {(f,c)/{(f,¢) is independent of f.)
Proof of lemma. We have that

§m@a¢a=/ ﬂmdwf¢/éwnwmw=/‘ F@§(Be(ap™)BId" (. ).
K* K* K*xXK*
Make the change of variables («, f) — (a, @ff), which yields

/ fl@)g(ap)e(B)lapld (. p) = / f@g(aP)laldac(f™)|pld"p.
K*xK* K* JK*

The goal is to show that the inner integral in the above is symmetric. We have

fwm&wﬂﬂfa=/ﬁ F(@)g(n)e TN dady,
K* K*xXK*

which is clearly symmetric. m]

Theorem 19.7 (Main Theorem). Any {-function has an analytic continuation to C and a functional
equation

{(f.c) = p()l(f.0),

where p(c) is independent of f and meromorphic in c.

Proof. It is enough to construct for each equivalence class of quasi-characters of exponent in (0, 1)
an explicit function f;. € Z such that

o = LU0

{(forc)

for all ¢ with exp(c) € (0,1). Moreover, p(c) has analytic continuation to C or C/2xi/qZ. Then
this implies the theorem. Indeed, for any f € Z, we have

{(f, ) (£ 0) = L(F. O (fov0),s
implying that )
{(f.0) = p()L(f.0),

where the left-hand side is analytic for exp(o) > 0 and the right-hand side is analytic for exp (o) <
1. O

Lemma 19.8. We have

e
PO="0

p(e) = c(-1)p(c),

and

and |p(c)| = 1 if ¢ has exponent 1/2.



MATH 223B: ALGEBRAIC NUMBER THEORY 45

Proof. We know that A
{(f.0) = p()S(f.) = p(e)p(OL (o).
Now, é(a) = |a|¢™ (@) = c(a) and f(a) = f(—a). The result follows. O

20. THURSDAY MARCH 11

Proof. We prove that p(c) (for ¢ = co|-|°) as defined previously has analytic continuation fors € C
(K archimedean) and for s € C/27i/qZ.

In the case where K = R is real, we have A(¢) = —¢& for £ € R. The equivalence classes of
quasi-characters of R* are

sgn(a@)|a® and |af
fors e C.Let f(¢) =e -t (corresponds to |«|*) and letf+(§) =te” nt! (corresponds to sgn(a)|a|®).
It is not difficult to compute that f (&) = f(¢) and f+(§) = if.(&). We compute the zeta function

o gdx o [C e odx [ 2 dt 1
(1= [ st =z e [et et < o,

and

0 d %) d 0
{(fur col-F) = / xe ™ (—|x) Z 4 / 26 |xP2E = 2 / e |xPdx = 7~ CD2L((s+1)/2).
X 0 0

o x|

Moreover, we compute that

T F) = (] 1779) = 26 D2T((1 - 5)/2)
and
C(fe 1) =il (] ') = i O D20((1 = s 4+ 1) /2).
Hence, /
—2/s
p(l- %) = ”(s_ﬁ/zr(r((f/_ 22) Ty = cos(ms/2)T()
and

4] ) = i VPT((s+1)/2)
PR = SO (1= s+ 1)/2)
Both of these functions have analytic continuations to C.

For the case K = C, the equivalence classes of quasi-characters are ¢, (a) = a" forc, : S' — S!
and nZ. We define corresponding functions to be

2" 775 sin(rs/2)T(s).

(x— iy)lnle_z”(x2+y2) ifn>0
(x + iy)lle=27*+")ifp <0

fa(9) ={

and note that the Fourier transform of f; is

& =5
for all n. Recall the Lebesgue meausure on C d¢ = 2dxdy in addition to the multiplicative measure

d*a = %drd@ where a = re’’ and |a| = r?. We have that

2drd9

r

2
* o — P —19n —271'r u9n 2s
(el )= [ h@a@ataa= [ [
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00 27T y [e) y
2/ / e—2nr r23+n—ldrd9 — 4”/ e—err r23+ldr'
0 0 0

Changing variables gives us that the the above is equal to (277)1~*"I/2T'(s + |n|/2). Similarly, we
have that

which simplifies to

§(foscal - 1) = CQM foy cnl - 1170) = iP(2m) T (1 = s 4 |l /2,
)
o _ (=D)M@m)'T (s +|nl/2)
plenl - I°) = >
(2m)°T(1 — s+ |n|/2)
which has analytic continuation to C.
The final case is for K a p-adic field. For £ € K, recall that A(§) = A(trg/q,(£)). We fix some

notation: ¢ = |Ox/p| and d*a = L 9%; recall that vol(Ox) = (N (D)) /2. Now, what are the

q-1]a]’
equivalence classes of quasi-characters? For n > 0, let ¢, be a character of conductor 7" such that
cn(m) =1 (50 cpl(147m) = 1). Let

5

ezmA(f) iff € D—lp—n
0 otherwise.

fa(8) = {

We next show the following helpful claim:

~ NDI/Zan ifZ =1 modp”
£ = { (D)N@)" 7 =1
0 otherwise.
Begin by noting that
fn(g) = /fn(,7)6—2711'1\(&7)03,7 - /Dlp,. e—ZniA((f—l)q)dU.

Now, D~'p™" is a compact subgroup of K, and the map taking 1 > e 27AME=D1) js a character
of D71p~". Recall that if H is a compact abelian group with Haar meausre 1, then

0 ify#1;
h)dy =
/HX( Jdu {Vol(H) ify =1,

where y : H — S' is a character. To see this, note that if y is nontrivial, then there exists g € H
with y(g) # 1, and we can make the change of variables

| xtwdn= [ xiamgh=x(o) [ xhyan

which forces the integral to be 0, since y(g) # 1. Returning to our integral of D~ 'p~", the
character 5 > e 27D g trivial if and only if £ = 1 mod p". Hence,

f;(g) — Vol(Z)_lp_") — VOl(ﬂ_n_dOK) — |7T_n_d|N(Z))_1/2 — qn+sq—d/2 — qn+d/2.

Now, we can compute the {-function. If n = 0, then ¢y = 1. It follows that

(hl- )= [ et
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Let A, = {x € K" | v(x) = v} = 1"Of = {x | 1/q < |x| < g} (think of A, as some sort of annulus).

Note that -
D= U A,
v=—d

and that, excluding 0, this union is disjoint. Now,

{(fol- |>—Z_/

On the other hand, fo = N(Z))I/ZILOK, SO

. _ 1
(T =g [ ol e W ataTalE =T
v=0

g d(s-1/2)

—N(D) /2 = ql_q_s .

;zVO* q "d'a = Z g "volg(Og) =

It follows that o
p(l-I) = gl =L

1-qg7°
has an analytic continuation to C. O

21. TUuEsDAY APRIL 16

Proof. We continue from where we left off previously. Let K be a p-adic field. For ¢, a character
of conductor n (where ¢, () = 1), recall that

f (g) _ leriA(f) lfnf € D—lp—n
" otherwise,

and that
f(E) =

We consider the ramified case for n > 0. Note that

{(fenl - 1) = / e (@)al'd
D-1pn

Let D = (7%), and note that (77¢") = D 1p™ = Ui _y_nAv, Where A, = {x € Ok | v(x) = v}.

Thus, we may write the integral in the above as

e D= [ N @iaaas Y o [ @i

P v=—d—-n

otherwise.

{N(Z))l/zN(p)" if=1 mod p

We claim that
/ MO (a)d*a =0
Ay

forv>—-d —n.
To see this claim, consider the case where v > —d. Then A, ¢ D! and A(a) = Altrg/q, (@) =
0, since trK/@P(a) € Z,. Hence, we get

/eZ”iA(“)cn(a)d*a=/ cn(a)d*a:/ cn(ﬂva)d*OJ:/ cn(a)d a =0,
A, ad ) % k

since ¢, is nontrivial on Oy (we are in the ramified case).
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Next, consider the case where —d—n < v < —d. Recall that D! = (ﬁ_d) andthat A, = J'L'VOI*C
Write A, = |_|(ap + D!) (take a set of representatives of the quotient by D). If x € g + D7,
then A(x) = A(a). Thus,

/ o2miA (@) en(a)d o = 27 i @) / cn(a)d a.
a0+D‘1

ap(1+p~v=9)

Now, changing variables gives us that

/ cp(a)d a = / cn(apa)d o = ¢, () cn(a)d a.
ap(14p=v=9) a(1+p=r=9) a(1+p=v=9)

The above is 0 as long as c, is a nontrivial character on 1+ p~"~%. This follows from the fact that
0 < —v—d < n, since ¢y|;,,-v-4 is a nontrivial character of conductor n.
Hence, we are left with

{(fovenl - ) = g7 / N, () d "
A_g-n
Let & be a set of representatives of Oy /(1 + p") so that Oy = | |.cg €(1+p"). Then
Agop = |_| en (1 +p") = |_|(67r_d_" + D).

ee& ee&

On ez~4"(1+p"), we have that ¢, is equal to c,(€). Moreover, on ez~ %" + D!, we have that A
is equal to A(en'_d_"). Thus,

L (foo cal-I%) = g™ (Z /

—-d-n -1
ceg Jem +D

R

cn(e)eZniA(Hr‘d_")) — q(d+n)s (Z Cn(e)eZﬂiA(en‘d‘”)) / d*
1+p™

ec&
Now, we compute

{(focal F) = L(forci |- 179) = g2 /

1+p"

cn(a)—llall—sd*a — qn+d/2 / da.
1+p"
This gives us explicit expressions for p(c):
s—1

—121— -
pUP) =g P and (el 19 =g 6 o)

where )
PO(C) — q—n/2 Z c(e)eZm‘A(e/n *").
ee&
The above is called a root number. As an exercise, prove that [py(c)| = 1. We see that p is
meromorphic and admits an analytic continuation to the whole complex plane; this completes
our analysis of the local case. ]

21.1. Restricted Products. Let {p} be a set of indices. For each p, let G, be a locally compact
abelian group, with H, C G, an open compact subgroup. Let G = [],’Gy, and recall that G is a
locally compact abelian group. The topology on G is given by viewing G as the inductive limit

G=lim [ [Gox][ | H,
Sc{p} peS PEs
|S|<co

where the individual terms in the limits are endowed with the product topology.
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Now, what are the characters of G? Let ¢ : G — C”* be a continuous quasi-character; denote
its restriction to Gy by cp.

Lemma 21.1. For almost all p, we have clep =1and

c(@) = | en(p)
P

fora € G. Conversely, if ¢y : Gy — C* is a quasi-character for all p and cp|g, = 1 for almost all p,
then ¢ = [, cp defines a continuous quasi-character of G.

Proof. Let U = D(1/2,1) C C*. Note that ¢c"*(U) is an open subset of G. Thus, there exists a finite

set S such that
[ [N x] [Hp c ™)
p

pesS
for N, € Gy open. It follows that ¢, (Hp) C U for p ¢ S, but ¢, (H,) is a subgroup of C*, which
forces cp(Hp) = 1.
For the other direction, the only nontrivial issue is the continuity of ¢ = [], cp. Let S = {p |
cplm, # 1}; suppose |S| = n. Let U C C* be aneighborhood of 1; let V be another neighborhood of
1suchthat V" c U. Forp € S, there exists N, C Gy such that ¢y (Ny) € V,soc([[, Ny) c V" C U.

Thus,
[ [N x] [Hy c W),
pes P
implying ¢ !(U) is open, as desired. m]

Let G, denote the dual of G,. Let Hy ={x € Gy | xl H, = 1}, and note that Gy/ Hy =~ H, is

discrete. Hence, Hy C ép is open (recall that Hy, open implies Gy, /Hy is discrete, so Hy = Gy/Hy
is compact).

Theorem 21.2. The restricted product Hp'ép with respect to Hy is isomorphic to G as locally com-
pact abelian groups.

Proof. By the previous lemma, the map G — Hp’ép given by ¢ — (c|g,) is a bijection. It is left
as an exercise to check compatibility. O

21.2. Measure Theory. We relate the Haar measure on [],’G, to the Haar measures on each
Gyp. We will show that the Haar measure on the restricted product is the restricted product of the
individual Haar measures. Let da, be a Haar measure on G, such that

/ dap =1
Hy

for almost all p.

Theorem 21.3. The restricted product
G=[]0c,
P
has a unique Haar meausre da such that for any finite subset S C {p} and

Gs=| ]Gy x| | Hp

peS pes
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we have

dalg = l_l day x da°,
pes

where da® is the Haar measure on [[,es Hy such that
/ daszl—[(/ dap)
GS pes Hp
(here we are letting H® = [Tpes Hp)-

Proof. See page 325 of Section 3.3 in Cassels and Frolich. m]

22. THURSDAY APRIL 18

22.1. Computing Integrals in Restricted Products. Let G = [], G, with respect to open
compact subgroups H, C G,. We have da = [’ da, and

/ dap =1
Hy

Definition 22.1. Let T = {p} be the index set, and let ¢ be a function taking finite subsets of T
into C (or, more generally, any topological space). We let ¢y = limg ¢(S). If for every open V;
containing ¢y, there exists a finite set S(Vp) such that for all S O S(v,) we have ¢(S) € V; .

for almost all p.

Lemma 22.2. Let f : G — R be a function that is either measurable and nonnegative (f > 0) or
in LY(G). Then

/ f(a)da=1lim [ f(a)da.
G S Jas
Lemma 22.3. For each p, let f, € L'(G,) be a continuous function such that f,(x) = 1 for all

x € Hy for almost all p. Let f = [],, fo. Then f is continuous. Moreover, if S is a finite set of primes
containing {p | fplu, # 1}, then

| flada= [ ( /G pfp<ap>dap) -

pes

Lemma 224. If

1;1 ( /G | m(apndap) <o,

then f € L'(G) and

/Gf(a)da = lim /GS f(a)da = ]:1 (/prp(ap)dap) .



MATH 223B: ALGEBRAIC NUMBER THEORY 51

22.2. Fourier Analysis on Restricted Products. Recall that G = ]_[;3 ép, where the restricted
product is taken with respect to Hy = Hy = {c € Gp | ¢|g, = 1} = G/Hy. Denote an arbitrary

element of G by ¢ = (cp)p, and let dc, denote the measure on ép dual to day. As an exercise,

check that
H*

P
for almost all p. Hint: use the following inversion formula

o))

Lemma 22.5. Let f, € L'(G) andﬁ, € Ll(ap) be continuous. Suppose that fy|p, = 1 for almost all
p. Then f =[] f, has Fourier transformf =1, ﬁ), and dc is the measure dual to da.

Let dc = [}, dcy.

22.3. Return to Global Theory. Let K be a number field with ring of integers Og. If p is a
prime (finite or infinite), then as usual let K, denote the completion of K at p. Likewise, let Ok
be the ring of integers in K. Recall from the beginning of the course the ring of adeles Ag and
the group of idéles Ix.

For each p, we have an isomorphism K, — K, given by & - (x - e?™(9) For x € Ag,
we have that Ay (x) = 0 for almost all p. Thus,

A(x) = Z Ap(x)
p

is a well-defined expression.
Theorem 22.6. The map Ag — A taking

£ (x N ezmA(xg))

is an isomorphism. Moreover, f € L'(Ag), and

= [ ey

Iff € LN(A), then f(x) = f(~x).

Proof. The map Ag — A is simply the product of the isomorphisms K, — Ep taking & — (x —
2% (%)) (note that this map takes Ok to Ol*(,p’ so the product of these local maps is indeed
well-defined on the restricted product). The local isomorphisms give us the global one. m]

Recall that we have a norm map | - | : [x — Ry given by (xp) = [], [xp]. Thus, we see that
if x € I, we have d(xa) = |x|da (this follows from the local situation, where d(xpap) = |xp|day).

We also recall that K embeds into Ak via the diagonal map; its image is a cocompact subgroup.
Also, for all x € K, we have A(x) = 0. Indeed, we may write

AG) = D A = Y| D M) | = ) A (y),
P p

P \»lp
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where y € Q. The last equality follows from assuming that K is Galois (which we may do without
loss of generality) and noting the following. We have

Z o(x)

o

ZAp(x) = Ao

ploo

5

where Ae : Q — R/Z takes y — —y; a similar argument works for

D Ap().

plp

D @) =) A ().
p p

Thus, we may rewrite the above as

Fixing a finite prime g, we have
Z A(y) +A4(y) — .
p#q,p<oo
Since A4(y) —y € Z, and since 4,(y) € Z, for p # g, it follows that

D by eanz, =z,
p

$0 2, Ap(y) = 0.

We conclude that under the isomorphism Ag ~ Ay, we have that K is sent to K*. To see why
this is the case, note that K* = Ag/K is discrete. Since K C K*, it follows that K* /K is discrete;
K*/K c V/K, some compact set. Thus, we have that K* is a K-vector space such that K* /K is

finite. Thus, K = K*, as desired.
We move on to discuss the multiplicative theory of ideles. We have that

K* — IK - [R>Os

where the first map is the diagonal embedding and the second one the norm | - | : Ix — R.,.
Note that the first map factors through Jx = {x € Ix | |x| = 1}. We have the following product
formula: for all x € K, we have |x| = [], [x[, = 1. We now choose a decomposition Ix = Jx X T
in the following way. Let py be archimedean, and let

T={aclk|ap, >0,ay=1forp # py}.

Ifp, =R, sets(t) = (t,1,1,...);if po = C, set s(¢) = (Vt,1,...). Let dt/t be the Haar measure on
T. On Jx we choose the measure db such that da = db x dt/t. If f € L'(Ix), then

© dt © dt
kﬂ@@—é (kﬂM%%;iL[:ﬂMTM.

Recall K*/Jx is cocompact, so
2" (2m)2hgReg(K)
Vdisckwk .

We will be interested only in quasi-characters that are trivial on K*. Given such a quasi-character

¢ : Ix — C*, we can consider its restriction to Jk; this descends to a quasi-character on Jx/K*,
which is a compact group. Hence, c is a character on Jx/K*.

vol(Jx/K") =
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Definition 22.7. Such a character ¢ : [x — C* trivial on K™ is said to be unramified if C|j, = 1.

Note that if ¢ is unramified, thenc = | - |* fors € C. If ¢ : Ix — C7, then |c(x)| = |x|? for
o € R, where o is called the exponent of c. Note that c is a character if and only if o = 0.

22.4. The {-function and the Functional Equation. Let f : Ax — C be continuous. Let Z

23. TUESDAY APRIL 23

23.1. The global {-function. Recall the following from last time. Let Z be the set of functions
f : Ax — C such that f, f € L'(Ag) are continuous; the functions

D fla(x+&) and ) f(a(x+9)
{eK feK

converge absolutely for all a € Ix and x € Ak and uniformly in (a,x) for a € C C Ix compact
and x € Ak /K; and the functions a — f(a)|a|’ and a — f(a)|a|" are in L!(Ig) for all ¢ > 1. For
f € Z, let ¢ be a quasi-character of exponent greater than 1 (i.e., ¢c(x) = 1 for all x € K*). Recall
that a quasi-character ¢ : Ix — C* is unramified if C/Jx = 1, where Jx = {x € Ix | |x| = 1},
where |x| = [], [x|p. Also recall that there is an equivalence relation on the quasi-characters
given by ¢; ~ ¢, if ¢1/c; is unramified, or, equivalently, if ¢; = ¢3| - | forx € C. To f € Z and a
quasi-character ¢, we associate the {-function

((f.c) = /1 Flae(a)da.

Fix ¢q such that ¢ = ¢y| - |* for s € C. Let {(f,¢) = {(f, co| - °)-
Lemma 23.1. The function {(f,c) is holomorphic in s for Re(s) = exp(c) > 1.
Proof. We sketch a proof. Write

fla)e(a) = f@)eo(a)e s,
Then

a%(f(a)C(a)) = f(a)co(a) log lallal’ € L' (Ix);
from this the result follows. m]
The following is the main theorem.

Theorem 23.2. The {-function admits an analytic continuation for all ¢ with simple poles atc =1
(s=0andcy =1)orc(a) = |a| (s =1 and cy = 1) with residues —xf(0) and Kf(O), respectively.
Here,

= 2" (2)2hg Rk

\/Disc(OK)a)K'

The {-function satisfies the functional equation

{(fre) = L(f.0),

where ¢(a) = |alc™!(a).



54 SALIM TAYOU

Proof. Let c be a quasi-character of greater than 1. Then

© dt ® dt
(.= [ flarciada- / /J fubeenans = [ a0,

where

Gi(fie) = ! F(tb)c(tb)db.

Since |c(tb)| = t° (notably, c(tb) is independent of b), we know that {;(f, ¢) is convergent for all
c. We interrupt this proof to prove a short lemma.

Lemma 23.3. We have
G(f.0) + £(0) /E c(tb)db = / o+ fo) [E é(b/1)db,

where E is a fundamental domain for the action of K* on Jx.

Proof. Recall that Jx /K™ is compact. We can write Jx = J ek @F and split

G(f,c) +f(0)/Ec(tb)db => /Ef(tb)c(tb)db+f(0)/Ec(tb)db.

aeK*
Rewrite this as
0;* aEf(“tb)c(“tb)db““f(O)/EC(tb)db=/Eog;*f(atb)c(tb)db +f(0)/Ec(tb)db,

where the first equality follows because c is trivial on K*. Thus,

5.0+ [ ctubras = [ 3 atbrecisras

aceK

Now, we need the following complex-analytic version of Riemann-Roch (we refer the reader
to Tate’s thesis for a proof):

Theorem 23.4 (Riemann—-Roch). We have
1 R
> flatb) = o > fla/th)
a€K

acK

Applying Riemann-Roch, the above can be rewritten as
A th A t/b
/ Zf(a/tb)c( ) db = / Zf(ab/t)c( /) 4,
eSS |2b] eSS |¢]

where the equality follows from making the change of variables b — b~!. Now, it is not difficult
to verify that c(t/b)/|t| = ¢(b/t), which tells us that the above is

/E Z f(ab/t)é(b/t)db,

aeK

which gives us the result of the lemma. m]

We next need the following lemma:
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Lemma 23.5. We have that

/c(tb)db _ {Kts lfc(a) = |af
E 0 lfCl]K * 1.

Proof. Recall that c(tb) = |t|*c(b). Hence,

/E c(tb)db = t* /E c(b)db = t* /J /K*c(b)db,

where ¢ : Jx/K* — S'. The above is
t*vol(Jxk/K")

if ¢|j, = 1 and 0 otherwise. Also, vol(Jx/K*) = k. For a proof of this last statement, see Marcus’s
Number Fields. i

We can now continue with our proof of the main theorem. We have

1
aﬁwaﬂaqa—+/ Mf&—‘/§MU@—+/ a0,
and
éymﬁd:gmﬁ@+fm{/aﬂmw—fmy/cwﬂwb
E E
Integrating both sides of the above, we have that
/équ /}Mf@—+/_ﬂM/dM% ﬂ@/dwmw?.

If |y, # 1, then

< 4 . dt
/1 f(O)/Ec(tb)db—f(o)/Ec(b/t)db7 =0,

implying that
o R d 00 d
@) aﬁ@:[ mﬁa{+[ (.0
If c|j, =1, then
© dr.0= [aos [Cagots (ﬁ%_f?)

Notice that

® dt
[ awof= ] racad

and |c(a)| = |a|°. For ¢’ < ¢ and ¢’ such that |¢’(a)| = |a|”, we have |f(a)c’(a)| < |f(a)c(a)l.
The function f(a)c’(a) is L', so for all s € C,
« dt
/ évt(fs C)T
1

is holomorphic. This applied to (2) and (3) implies the analytic continuation and the functional
equation. O
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23.2. Comparison with the classical theory. Letc : [y — C* be a quasi-character with c|g+ =
1. Let S be a finite set of primes that contain the infinite primes. We suppose that c is unramified
outside of S. Recall that we can write ¢ = [[, ¢p. For each p € S, we have

~ it
cplap) = Cp(ap)|ap|pp

fort, e R.Forp ¢ S, set

c*(a) = n cp(ap),

pés
and note that c* is a character on the ideals I € K coprime to S. Hence, c¢* induces a character
x:{IcK|(I,S) =1} — S!, and we may write
. - it
c(a) = [ | &(@plaly’ x(ps(a)).

pesS
We have a corresponding function in Z: for p € S take f, from the local theory; for p ¢ S, set
fo= Lo:. Set f = [1, fp, and note that f =[], f,. For p ¢ S, we have

N(@p)—l/z
|fo(ap)llaplyday = ——————,
/K; fp p plp““p 1-— N(p)_o-

and [],(1/(1 = N(p)™)) is convergent for o > 1. Thus,
(o) =] | 6o en).
p

For p ¢ S, we have
pJ(j)p)—l/z

1—-x(P)N(p)~s

(el 1) =L 0 [ [NO [ ] & ol 1),
pées pes
which implies the results from before—that the Hecke {-function { (s, y) has analytic continuation
and functional equation.

§b(ji,cp|-|§) =

Hence,
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